next up previous contents
Next: REALCYC Up: Sample dynamical systems Previous: REALFP


COMPLFP

In addition to the case that all eigenvalues/-vectors of the critical point's Jacobian matrix are real, a pair of conjugated complex eigenvalues/-vectors can occur. This case is not possible in dynamical system REALFP, thus another system is necessary to test this case - we start with r and $\phi$ denoted in polar coordinates:
$\displaystyle \dot{r}$ = $\displaystyle A\cdot{}r,\quad{}A\ne{}0$  
$\displaystyle \dot{\phi}$ = 1  
$\displaystyle \dot{z}$ = $\displaystyle B\cdot{}z$  

Depending on the values of A and B this system exhibits either an attracting, repelling, or saddle critical point with a pair of conjugated complex eigenvalues/-vectors:
$\displaystyle A<0,\ B<0$ $\textstyle \to$ attracting focus  
$\displaystyle A<0,\ B>0$ $\textstyle \to$ saddle focus (attracting z axis)  
$\displaystyle A>0,\ B<0$ $\textstyle \to$ saddle focus (repelling z axis)  
$\displaystyle A>0,\ B>0$ $\textstyle \to$ repelling focus  

In terms of Cartesian coordinates ( $x=r\cdot{}\cos\phi,\
y=r\cdot{}\sin\phi$) this dynamical system can be written as
$\displaystyle \dot{x}$ = $\displaystyle A\cdot{}x - y$  
$\displaystyle \dot{y}$ = $\displaystyle A\cdot{}y + x$  
$\displaystyle \dot{z}$ = $\displaystyle B\cdot{}z$  


next up previous contents
Next: REALCYC Up: Sample dynamical systems Previous: REALFP
Helwig Löffelmann, November 1998,
mailto:helwig@cg.tuwien.ac.at.