next up previous contents
Next: NLCYC1 Up: Sample dynamical systems Previous: COMPLFP


REALCYC

For testing Poincaré maps we define a simple cycle in 3D. The critical point of the Poincaré map of this dynamical system should be either an attracting node, a saddle, or a repelling node. For this purpose we think about points in phase space as specified by coordinates r, $\phi$, and z: r and $\phi$ denote polar coordinates in the x-y plane. REALCYC can now be specified as follows:
$\displaystyle \dot{r}$ = $\displaystyle A\cdot{}(r^2-1),\quad{}A\ne{}0$  
$\displaystyle \dot{\phi}$ = 1  
$\displaystyle \dot{z}$ = $\displaystyle B\cdot{}z,\quad{}B\ne{}0$  

This dynamical system contains a cycle. This is easy to show: $\dot{r}\vert _{r=1}=0$ and $\dot{z}\vert _{z=0}=0$ induce that the unit cycle $\mathcal{C}=\{\mathbf{x}:r=1\}$ is a cycle of this dynamical system. Furthermore it can be stated that there are no other cycles than $\mathcal{C}$ in this specific dynamical system: since $\dot{z}\vert _{z\ne{}0}\ne{}0$ no cycle can exist outside the x-y plane; $\dot{r}\vert _{\vert r\vert\ne{}1}\ne0$ assures that no other cycle than the unit cycle resides within the x-y plane.

Using this definition, we can directly influence the Poincaré map of cycle  $\mathcal{C}$ by adjusting parameters A and B:

$\displaystyle A<0,\ B<0$ $\textstyle \to$ $\displaystyle \textrm{stable limit cycle } \mathcal{C}$  
$\displaystyle A<0,\ B>0$ $\textstyle \to$ $\displaystyle \textrm{saddle cycle } \mathcal{C},
\textrm{ attracting cylinder } r=1$  
$\displaystyle A>0,\ B<0$ $\textstyle \to$ $\displaystyle \textrm{saddle cycle } \mathcal{C},
\textrm{ attracting } x\textrm{-}y \textrm{ plane}$  
$\displaystyle A>0,\ B>0$ $\textstyle \to$ $\displaystyle \textrm{instable cycle } \mathcal{C}$  

To embed this system in the scope of DynSys3D, it has to be defined on the basis of Cartesian coordinates:
x = $\displaystyle r\cdot{}\cos\phi$  
y = $\displaystyle r\cdot{}\sin\phi$  

The dynamical system in terms of Cartesian coordinates is then given as:
$\displaystyle \dot{x}$ = $\displaystyle a\cdot{}x - y,\quad{}a=A\cdot{}(r-1/r),\ r=\sqrt{x^2+y^2}$  
$\displaystyle \dot{y}$ = $\displaystyle a\cdot{}y + x$  
$\displaystyle \dot{z}$ = $\displaystyle b\cdot{}z,\quad{}b=B$  




next up previous contents
Next: NLCYC1 Up: Sample dynamical systems Previous: COMPLFP
Helwig Löffelmann, November 1998,
mailto:helwig@cg.tuwien.ac.at.