next up previous contents
Next: REALTORUS Up: Sample dynamical systems Previous: REALCYC


NLCYC1

Another test case for the Poincaré section techniques is NLCYC1, which is a dynamical system that exhibits one cycle with a non-linear Poincaré map.

First we specify a linear 2D system with a critical point in the origin and characteristic directions coinciding with the axes of the system:

$\displaystyle \dot{\alpha}$ = $\displaystyle A\cdot{}\alpha$  
$\displaystyle \dot{\beta}$ = $\displaystyle B\cdot{}\beta$  

Next we apply a non-linear transformation to variable $\alpha$ $u=\alpha+\beta^2$, and $v=\beta$. This transformation yields another 2D dynamical system as follows:
$\displaystyle \dot{u}$ = $\displaystyle A\cdot{}u + (2B-A)\cdot{}v^2$  
$\displaystyle \dot{v}$ = $\displaystyle B\cdot{}v$  

We now place the entire system into the half-plane  $\{(u',v') :
u'>0\}$ by transformation  $u'=e^u,\ v'=v$ ( $u=\ln{}u',\ v=v'$) and end up with the following system:
$\displaystyle \dot{u'}/u'$ = $\displaystyle A\cdot{}\ln{}u' + (2B-A)\cdot{}v'^2$  
$\displaystyle \dot{v'}$ = $\displaystyle B\cdot{}v'$  

Finally we transform the system into 3D by rotating it around the z-axis (r=u', $\dot{\phi}=C$, and z=v'). This yields the final system as follows:
$\displaystyle \dot{x}$ = $\displaystyle x\cdot{}(A\cdot{}\ln{}r +
(2B-A)\cdot{}z^2) - C\cdot{}y,\quad{}r = \sqrt{x^2 + y^2}$  
$\displaystyle \dot{y}$ = $\displaystyle y\cdot{}(A\cdot{}\ln{}r +
(2B-A)\cdot{}z^2) + C\cdot{}x$  
$\displaystyle \dot{z}$ = $\displaystyle B\cdot{}z$  


next up previous contents
Next: REALTORUS Up: Sample dynamical systems Previous: REALCYC
Helwig Löffelmann, November 1998,
mailto:helwig@cg.tuwien.ac.at.