next up previous contents
Next: Notes on the notation Up: Sample dynamical systems Previous: NLCYC1


REALTORUS

REALTORUS should be a dynamical system, which exhibits an invariant torus, either attracting or repelling. To design this system, we start in 2D:
$\displaystyle \dot{r}$ = $\displaystyle A\cdot{}(r^2-R),\quad{}A\ne{}0,\ R>0$  
$\displaystyle \dot{\rho}$ = 1  

Depending on the value of A this system has either an attracting or repelling cycle of radius R. In Cartesian coordinates ( $u=r\cdot{}\cos\rho,\ v=r\cdot{}\sin\rho$) this system is given as follows:
$\displaystyle \dot{u}$ = $\displaystyle a\cdot{}u - v,\quad{}a=A\cdot{}(r-R/r),\ r=\sqrt{u^2+v^2}$  
$\displaystyle \dot{v}$ = $\displaystyle a\cdot{}v + u$  

We now squeeze this system into half-plane  $\{(u',v') :
u'>0\}$ by transformation  $u'=e^u,\ v'=v$ ( $u=\ln{}u',\ v=v'$) and end up with the following system:
$\displaystyle \dot{u'}/u'$ = $\displaystyle a\cdot{}u - v,\quad{}a=A\cdot{}(r-R/r),\ r=\sqrt{u^2+v^2}$  
$\displaystyle \dot{v'}$ = $\displaystyle a\cdot{}v + u$  

Using this dynamical system in 2D, we can construct a three-dimensional system, which actually contains an invariant torus by the following definition:
x = $\displaystyle u'\cdot{}\cos\phi$  
y = $\displaystyle u'\cdot{}\sin\phi$  
z = v'  

Assuming $\dot{\phi}=C$ ( $u=\ln{}u'=\ln\sqrt{x^2+y^2},\ v=v'=z$) this dynamical system can be expressed as follows:
$\displaystyle \dot{x}$ = $\displaystyle (a\cdot{}u-v)\cdot{}x -
C\cdot{}y,\quad{}a\!=\!A\cdot{}(r-R/r),\ r\!=\!\sqrt{u^2+v^2}$  
$\displaystyle \dot{y}$ = $\displaystyle (a\cdot{}u-v)\cdot{}y + C\cdot{}x$  
$\displaystyle \dot{z}$ = $\displaystyle (a\cdot{}v+u)$  


next up previous contents
Next: Notes on the notation Up: Sample dynamical systems Previous: NLCYC1
Helwig Löffelmann, November 1998,
mailto:helwig@cg.tuwien.ac.at.