Outline and Shape Reconstruction in 2D ECCV 2022 TUTORIAL

Stefan Ohrhallinger, Jiju Peethambaran, Amal Dev Parakkat

Technische Universität Wien, Austria
Saint Mary's University, Canada
LTCI- Telecom Paris, Institut Polytechnique de Paris, France

Tutorial Outline

Intro \& Proximity Graphs
Curve Reconstruction
Benchmark \& Demo
Sketch Reconstruction
Visual Perception of Shapes
Shape Characterization

Stefan Ohrhallinger - 25 minutes
Stefan Ohrhallinger - 25 minutes, Q\&A 5 minutes
Amal Dev Parakkat - 25 minutes, break 15 minutes
Amal Dev Parakkat - 25 minutes, Q\&A 5 minutes
Jiju Peethambaran - 25 minutes
Jiju Peethambaran - 25 minutes, Q\&A 5 minutes

Topic: Intro \& Proximity Graphs

Motivation
Proximity Graphs

Presenter:

Stefan OHRHALLINGER

Researcher
Institute of Visual Computing \&
Human-Centered Technology

Introduction

Occl

The Problem

Connect the Dots

Now try without the numbers
Reconstructed polygon

Challenges for Curve Reconstruction

Non-uniform sampling

Noisy sampling

Sparse sampling

Outliers, multiple curves

Sharp Corners

Non-manifold curves

How to Choose a Suitable Algorithm?

A Benchmark Helps to Decide [OPP* ${ }_{21}$]

Evaluating algorithms on challenging curves, highlighting strengths \& weaknesses Quantitative analysis on: reconstruction quality \& run-time

Scope of this Tutorial

We categorize 36 curve reconstruction algorithms:

Boundary samples

Area samples

Implicit curve

Polygonal curve

Taxonomy of Algorithms

Graph-based

Non-manifold

Feature size based

HVS-based

Noisy fitting

Implicit

Sharp corners

Region Reconstruction

Input Data: Properties

Non-uniform sampling: determines feature size

Noisy sampling: needs fitting

Outliers: needs filtering

Reconstruction Output: Properties

$\operatorname{deg}(\mathrm{v})=2$
Manifold

$\operatorname{deg}(\mathrm{v}) \leq 2$
Open curves

Sharp Corners
Guarantees
$O(n \log n)$
Multiply Connected

Time Complexity

Input capabilities: e.g., noise, outliers, non-uniformity

Output capabilities: e.g., manifold, sharp, $O(n \log n)$
[Leeooa]
Connect2D
Peel \quad Crawl

Concorde

$$
\alpha \text {-shapes }
$$

[Leno6]
FitConnect
StretchDenoise
γ-neighborhood
DISCUR
VICUR

> Shape-hull Graph
> ec-Shape
β-skeleton
Gathan
Conservative Crust
Ball-pivoting
[Aro98]

Robust HPR
Voronoi Labeling

Crust
[WYZ* ${ }_{14}$]
[AMoo]
NN-Crust

$$
\left[\mathrm{CFG}^{*} 05\right] \quad[\text { Rupi4 }]
$$

r-regular shapes
HNN-Crust
[FRor]
Optimal Transport [Gie99]

EMST

[Hiyog] Edge exchanging

Definitions Curve

Curve \sum : Simple closed and planar
Smooth curve C: (collection of) twice-differentiable bounded i-manifolds $\in \mathbb{R}^{2}$
Sample set P: n points sampled on \sum or C

Definitions Sampling

Definitions Sampling

Reach of a curve interval I: $\inf \operatorname{lfs}(p): p \in I \quad\left[O M W_{I} 6\right]$
ρ-Sampling [OMW ${ }_{16}$]:
$\forall \mathrm{p} \in \mathrm{C}, \exists \mathrm{s} \in \mathrm{S}:\|\mathrm{p}, \mathrm{s}\|<\rho$ reach (p)

Proximity Graphs for a Point Set

GG

Minimum Spanning Tree: cycle-free graph spanning P with minimum edge weights Relative Neighborhood Graph: $\forall(\mathrm{p}, \mathrm{q}): \mathrm{d}(\mathrm{p}, \mathrm{q}) \leq \mathrm{d}(\mathrm{p}, \mathrm{x}), \mathrm{d}(\mathrm{p}, \mathrm{q}) \leq \mathrm{d}(\mathrm{q}, \mathrm{x}) \forall \mathrm{x} \in \mathrm{P}, \mathrm{x} \neq \mathrm{p}, \mathrm{q}$ Gabriel Graph: All (p, q) with $\mathrm{p}, \mathrm{q} \in$ empty ball centered at (p, q)

Delaunay Triangulation: circumcircles empty of P

More Proximity Graphs

EMST ($\mathrm{d} \geq \mathrm{I}$) $\rightarrow \mathrm{BC}_{\mathrm{o}}(\mathrm{d} \geq 2) \quad$ SIG edges: $\mathrm{r}=\left|\mathrm{v}, \mathrm{NN} \mathrm{N}_{\mathrm{I}}\right|$ overlap $\mathrm{DT} \backslash$ divergent concave

Boundary Complex
Connect2D [OMi3]

Sphere-of-Influence Graph
[Toussaint88]

Shape-Hull Graph
[PMI5]

Topic: Curve Reconstruction

Graph-based Algorithms
Feature size based Algorithms

Presenter:

Stefan OHRHALLINGER

Researcher
Institute of Visual Computing \&
Human-Centered Technology

Algorithms Based on Graphs - Overview

a-shapes [EKS83], Ball-pivoting [BB97]
β-skeleton [KR85]
y-neighborhood [Vel92]
Sculpting [Boi84a]
EMST [FMG94], edge exchange [OMir] and inflating [OMi3]
r-regular shape [Att97]
Shape-hull graph [PMisb], Voronoi labeling [PPT*is]
Crawl thru neighbors [PMi6]

a-Shapes [EKS83]

Disks of radius I/a

Generalization of convex hull ($\mathrm{a}=\mathrm{o}$)

Extracting manifolds [BB97]
Later: Ball-pivoting algorithm [BMR*99]

$\boldsymbol{\beta}$-Skeleton [KR85]

$\beta<I$

$\beta=2$: Relative neighborhood graph
Empty lens formed with $\measuredangle \mathrm{prq}<\theta$
$=$ Intersection/Union of disks

$$
\theta= \begin{cases}\sin ^{-1} \frac{1}{\beta}, & \text { if } \beta \geq 1 \\ \pi-\sin ^{-1} \beta, & \text { if } \beta \leq 1\end{cases}
$$

8-Neighborhood [Vel92]

A unification of i2 graphs including convex hull, Delaunay triangulation, Gabriel graph, RNG, MST, nearest neighbor graph, a-shapes and β-skeletons.
$\gamma\left(\gamma_{0}, \gamma_{I}\right)$ is defined for $-I<\gamma_{0}, \gamma_{I}<I$ and $\left|\gamma_{0}\right| \leq\left|\gamma_{I}\right|$
Contains edges with empty neighborhood defined by disks using γ_{0}, γ_{I}

It can also reconstruct shapes not in the Delaunay graph

Sculpting [Boi84a]

EMST-based Reconstruction [FMG94]

Proves that EMST reconstructs (open) curve from sufficiently dense samples

EMST-based Edge-Exchange Reconstruction [OMir]

Transform EMST with "snap" and "move" operations - combinatorial complexity

EMST-based Inflating Reconstruction [OMis]

EMST

BC: $\operatorname{deg}(\mathrm{v}) \geq 2$

$\operatorname{deg}(\mathrm{v}) \leq 2$
$\operatorname{deg}(\mathrm{v})=2$

r-regular Shapes [Att97]

An r-regular shape has curvature $\geq r$ everywhere

Requires uniform sampling of boundary

Boundary consists of edges shared by Delaunay circumcircles with property of angle<threshold depending on uniform sampling density and curvature r

Shape-Hull Graph [PMı5b]

(a). Divergent

(b). Non-divergent

Reconstructs smooth curves with divergent concavity
Eliminates Delaunay triangles with circumcenter outside boundary

Voronoi Labeling [PPT*ig]

Incrementally labels orientation from estimated normals via Voronoi poles

Also computes medial axis

Crawl Thru Neighbors [PMi6]

Connects neighbors greedily, heuristic decides curve closed/open
Parameter-free: handles open+multiple curves, holes and outliers

Algorithms Based on Graphs - Conclusion

a-shapes [EKS83], Ball-pivoting [BB97], β-skeleton [KR85], $\boldsymbol{\gamma}$-neighborhood [Vel92], Sculpting [Boi84a], EMST [FMG94], edge exchange [OMir], inflating [OMi3], r-regular shape [Att97], Shape-hull graph [PMi5b], Voronoi labeling [PPT* ${ }^{\text {r9 }}$], Crawl thru neighbors [PMi6]

They often require a global parameter
Good results mostly for uniformly sampled point density
Delaunay graph is not guaranteed to contain the reconstruction
Reconstruction is often slow or trapped in local minima

Algorithms Based on Feature Size - Overview

Crust [ABE98]
Anti-Crust [Gol99]
NN-Crust [DK99]
Conservative Crust [DMR99]
Lenz [Leno6]
Hiyoshi [Hiyog]
HNN-Crust [OMWI6]
SIGDT [MOW 22]

Crust [ABE98]

Seminal paper: feature sized reconstruction - no more uniform sampling required

ε-Sampling [ABE98]:
$\forall p \in C, \exists s \in S:$
$\|p, \mathrm{~s}\|<\varepsilon \mathrm{Ifs}(\mathrm{p})$
extracts DG and Voronoi graph
Proof: $\varepsilon<0.252 \cong \alpha>15$ I $^{\circ}$

Anti-Crust [Gol99]

Extracts the Crust in a single step from the Delaunay graph

Also extracts the medial axis skeleton

NN-Crust [DK99]

Simple and elegant improvement of Crust:

First, connects point to nearest neighbor
Then to nearest neighbor in half-space s.t. angle $>90^{\circ}$
Proof: $\varepsilon<\mathrm{I} / 3$, corresponding to $\alpha>{\mathrm{I} 4 \mathrm{I}^{\circ}}^{\circ}$

Conservative Crust [DMR99]

Crust

NN-Crust

Conservative Crust

Filters edges from Gabriel graph
Robust to outliers
Collections of open/closed curves
But requires a parameter
Misses some sharp corners

Lenz: Probe Reconstruction [Leno6]

Starts with a seed edge and connects edges with a probe shape
Requires an angle parameter
Permits self-intersections
Claims $\varepsilon<0.48$ but no proof

Hiyoshi: TSP [Hiyog]

Adapts Traveling Salesman Problem to multiple connected curves
Transforms it into maximum-weight 2 -factor problem (solvable in P time)
Proof for: $\varepsilon<1 / 3, \mathrm{u}<$ I. 46 (relative uniformity of adjacent edge lengths)

HNN-Crust [OMWI6]

Simple variant of NN-Crust, reducing angle from 90° to 60° :

SIGDT [MOW22]

г) $\mathrm{SIGDT}=\mathrm{SIG} \cap \mathrm{DT}$

2) Enforce $d \geq 2$

3) Inflating creates a manifold boundary

4) Sculpting interpolates interior vertices: $\mathcal{\varepsilon}<0.5, \mathfrak{u}<2$

Sampling Conditions of Crust Algorithms

NN-Crust:
$\varepsilon<\mathrm{I} / 3$

HNN-Crust:
$\rho<0.9$

Algorithms Based on Feature Size - Conclusion

Crust [ABE98], Anti-Crust [Gol99], NN-Crust [DK99], Conservative Crust [DMR99]

Lenz [Leno6], Hiyoshi [Hiyog], HNN-Crust [OMW 16], SIGDT [MOW 22]

Guarantees on sampling condition
Work well for non-noisy point sets

Outline

TEL AVIV 2022

Topic: Benchmark and Demo
To be precise:

- What all our benchmark has?
- How to use our benchmark?
- What all we evaluated?
- What are our conclusions?

Presenter:

Amal Dev PARAKKAT
Assistant Professor
Institut Polytechnique de Paris
amal.parakkat@telecom-paris.fr

The Benchmark

Our benchmark contains: Algorithms, Dataset, Sampling tools, Evaluation criterias, and Test scripts

The Benchmark - Algorithms

We included is publicly available algorithms

Contains algorithms from late gos (Crust family) to 2018

- Crust, NNCrust, CCrust, Gathan, GathanG, Lenz, Discur, Vicur, OptimalTransport, ConnectzD, Crawl, HNNCrust, FitConnect, StretchDenoise, Peel

We removed OptimalTransport from experiments since it simplifies curves

The Benchmark - Dataset

Our dataset contains more than 2500 point sets:

- Classic data - Collected from various papers (using WebPlotDigitizer)
- Image data - Samples obtained from the silhouette images (taken from MPEG7 CE Shape-I, Edinburgh, Io7o-shape image databases)
- Synthetic data - Analytical (shapes with sharp corners, \& self-intersections) and ε-sampled points

Classic Data

Image Data

LFS sampling

Non-manifold

Sharp corners

The Benchmark - Dataset

We also provide ground truths (linear approximation) as:

- Ordered vertices: A loop of vertices - for simple closed curves
- Edge list: List of edges - for complex curves

Grouped under the following categories:

Moreover, we provide an interactive ground truth generation tool

The Benchmark - Sampling tools

LFS-sampling tool:

- Samples are made from input Bezier curve representation
- Maximal empty disks are computed to create a medial axis approximation
- Estimate LFS at each sample and use it to pick a set of samples satisfying the ε-sampling condition

Contour sampling tool:

A Bezier curve and its LFS-based sampling

A binary image
Extracted contour

The Benchmark - Evaluation criteria

Let closest point correspondences be D and D' of two curves C and C'

$$
D=(s, t) \mid s \in C^{\prime}, t=M(s)
$$

$$
D^{\prime}=\left(s^{\prime}, t^{\prime}\right) \mid s^{\prime} \in C, t^{\prime}=M^{\prime}\left(s^{\prime}\right)
$$

where M and M^{\prime} be the respective non-bijective shortest distance maps
We use the following metrics to compare two curves:

$$
H_{D}\left(C, C^{\prime}\right)=\max \left\{\max _{(s, t) \in D}\|s-t\|, \max _{\left(s^{\prime}, t^{\prime}\right) \in D^{\prime}}\left\|s^{\prime}-t^{\prime}\right\|\right\}
$$

$$
\begin{aligned}
R M S_{D}\left(C, C^{\prime}\right)= & \sqrt{\frac{1}{N}\left(\sum_{(s, t) \in D}\|s-t\|^{2}+\sum_{\left(s^{\prime}, t^{\prime}\right) \in D^{\prime}}\left\|s^{\prime}-t^{\prime}\right\|^{2}\right)} \\
& \text { Root mean squared distance } \quad N=|D|+\left|D^{\prime}\right|
\end{aligned}
$$

The Benchmark - Test scripts

Driver program can be run with various arguments and options
A set of test scripts for quantitatively \& qualitatively evaluate the algorithms
Each test script has a list of algorithms and test data, designed for the specific experiment:

- run-sampling.sh: ε-sampled [ABE98] test data
- run-noisy.sh: perturbed with uniform noise
- run-lfsnoise.sh: perturbed with lfs-based noise
- run-outliers.sh: added outlier points
- run-manifold.sh: whether reconstruction is a manifold
- run-sharp-corners.sh: sharp feature curves
- run-open-curves.sh: open curves
- run-multiple-curves.sh: multiply connected curves
- run-intersecting.sh: curves with intersections

Evaluation - Sampling density as ε-sampling

Evaluation - Noise robustness (BB Diagonal)

Evaluation - Noise robustness (LFS)

Evaluation - Noise robustness (ε-sampling + LFS)

0.1

0.2
0.4

Ifs-varying Noisy sampling

Evaluation - Outlier

Evaluation - Running time

Evaluation - Qualitative Comparison

Evaluation - Overview

In short, we evaluate the robustness of various algorithms based on:

- Sampling density as ε-sampling
- Noise robustness as δ of bounding box diagonal
- Noise robustness as δ of lfs
- Noise+sampling density as ε-sampling and δ of 1 fs
- Outliers robustness in \% of samples
- Average runtimes (in s)

Evaluation - Summary

Curve/Input feature	Best two algorithms in order
Uniform Noise	DISCUR, VICUR
Non-uniform Noise	STRETCHDENOISE, CONNECT2D
Outliers	HNN-CRUST, CRUST
Non-uniform sampling	HNN-CRUST, PEEL
Runtime	NN-CRUST, GATHAN1
Manifold curves	CONNECT2D, CRAWL
Non-manifold curves	CRUST, LENZ
Sharp features	GATHANG, CONNECT2D
Open curves	VICUR, HNN-CRUST
Multiple curves	PEEL, HNN-CRUST

Outline

Topic: Sketch Reconstruction
To be precise:

- Sketching
- Sketching and reconstruction
- Sketch completion
- Rough sketch simplification

Presenter:

Amal Dev PARAKKAT
Assistant Professor
Institut Polytechnique de Paris
amal.parakkat@telecom-paris.fr

Sketching

TEL AVIV 2022

Sketching is an integral part of everyone's life
Sketching comes across us in various stages of our life:

- Kids playing with pencils and paints
- Intrinsic part of various academic curriculums
- Professional usage

MOREOVER, IT'S FUN!!!!!

Relevance of sketch processing in Computer Graphics

Mountain creation

Printable models from VR drawings

3d modeling \& editing

Expressive sketch-based animation

Sketching animation in VR

Sketching and Reconstruction

Sketching and reconstruction problem are closely related Reconstructing from:

- Simple scanned sketch

© de Goes et al.

Sketching and Reconstruction

Sketching and reconstruction problem are closely related
Reconstructing from:

- Simple scanned sketch
- Missing strokes

© de Goes et al.

Sketching and Reconstruction

Sketching and reconstruction problem are closely related
Reconstructing from:

- Simple scanned sketch
- Missing strokes
- Noisy sketch

© de Goes et al.

Sketching and Reconstruction

TEL AVIV 2022

Sketching and reconstruction problem are closely related
Reconstructing from:

- Simple scanned sketch
- Missing strokes
- Noisy sketch
- Dirty sketches

© de Goes et al.

Sketch completion and Sketch simplification

We look at two important subproblems:
Sketch completion and sketch simplification
We won't have a detailed discussion, but a very quick and brief overview of:

- A.D. Parakkat, P. Memari, M.P. Cani, "Delaunay Painting: Perceptual Image Colouring from Raster Contours with Gaps" - Computer Graphics Forum 2022
- A.D. Parakkat, P. Madipally, H.H. Gowtham, M.P. Cani, "Interactive Flat Coloring of Minimalist Neat Sketches" - Eurographics 2020 (Short paper)
- A.D. Parakkat, M.P. Cani, K. Singh, "Color by Numbers: Interactive Structuring and Vectorization of Sketch Imagery" - ACM CHI 202I
- A.D. Parakkat, U.B. Pundarikaksha, R. Muthuganapathy, "A Delaunay triangulation based approach for cleaning rough sketches" - Computers \& Graphics 2018

Sketch completion

The input is a set of disconnected sketch strokes and is asked to appropriately connect them (in other words, filling the gaps in a line art)

Sketch completion - Sketch coloring

Using Flood-fill algorithm

Distinct artistic feeling:

- Le Grand Méchant Renard et autres contes...
- Ernest \& Celestine

Sketch completion - Sketch Coloring

COLOR HINTS
DESIRED COLORING
Infer the unknown boundary!!!

Sketch completion - Delaunay Painting

Assumption - Required boundary is present in the Delaunay Triangulation (Delaunay confirming) Problem boils down to connecting appropriate points in Delaunay Triangulation

Delaunay Painting - Defining flow

Delaunay Painting - Defining flow

$\operatorname{Flow}(u, v)=\max (f(X): \forall$ paths X from u to $v)$

$$
f(X)=\min (\operatorname{Weight}(u, v): \forall(u, v) \in X)
$$

Delaunay Painting - Defining flow

Delaunay Painting - Defining flow

F low $(u, v)=\max (f(X): \forall$ paths X from u to $v)$
$f(X)=\min (\operatorname{Weight}(u, v): \forall(u, v) \in X)$

Delaunay Painting - Creating a graph

Weighted dual graph
Create a color_strength for all vertices and initialize it as 'o'

Delaunay Painting - Logic

Recursive color spreading
Color strength updation
Priority queue based exploration

Delaunay Painting - Updation

Color starting from a triangle ' v '

Delaunay Painting - Demo

Delaunay Painting - Demo

Delaunay Painting - We can do a lot more

Are we missing something?
Too much work if the sketch has additional information like shading Not aesthetically appealing

Delaunay Painting - Additional functionalities

How to address them?
Too much work if the sketch has additional information like shading - Diffuse colors Not aesthetically appealing - Give finishing using an aesthetic curve completion

Delaunay Painting - Color Diffusion

Presence of shading information (hatching) makes the coloring process time consuming Artists usually use a comparatively smaller brush size for shading/hatching

Bipartite the regions into two - colored and uncolored Recursively update the bipartition

Delaunay Painting - Aesthetic curve completion
Splitting points - Edges having different colors on its associated triangles Sharp corner or smooth curve?
Decision based on tangent approximation

Delaunay Painting - Sharp corner heuristics

Angle constraint - angle between tangents less than $\pi / 3$
Perpendicular constraint - intersection to edge distance is less than $2^{*} \|$ edge $\|$ Linearity constraint - pixels near the endpoints are linearly arranged

All three constraints are qualified \rightarrow sharp corner, else \rightarrow smooth curve

Delaunay Painting - SIMVC curves

Perceptually pleasing contour
Scale Invariant Minimum Variation Curve - to form more circular arcs

$$
E_{S I M V C-E n t e m}=\frac{\left(\int d s\right)^{5}}{\|B-A\|^{2}} \int\left(\frac{d \kappa(s)}{d s}\right)^{2} d s
$$

Delaunay Painting - SIMVC curves

Perceptually pleasing contour
Scale Invariant Minimum Variation Curve - to form more circular arcs

$$
E_{S I M V C-E n t e m}=\frac{\left(\int d s\right)^{5}}{\|B-A\|^{2}} \int\left(\frac{d \kappa(s)}{d s}\right)^{2} d s \text { How small the curve is? }
$$

Delaunay Painting - SIMVC curves

Perceptually pleasing contour
Scale Invariant Minimum Variation Curve - to form more circular arcs

$$
E_{S I M V C-E n t e m}=\frac{\left(\int d s\right)^{5}}{\|B-A\|^{2}} \int\left(\frac{d \kappa(s)}{d s}\right)^{2} d s \text { How much curved? }
$$

Delaunay Painting - More Results

Delaunay Painting - Labelling medical images

Sketch Simplification

Sketch Simplification - Automatic triangle growing

Delaunay triangles inside regions will have a "fat triangle"

Delaunay triangles inside adjacent strokes will have only "thin triangles"
 Overview:

Automatic triangle growing

Algorithm: Start from the largest "valid" ungrouped triangle
Recursively group neighboring triangles until a "condition" is satisfied Restart the procedure

(a)

(g)

(b)

(h)

(c)

(i)

(d)

(j)

(e)

(k)

(f)

(1)

Automatic triangle growing

Stop the procedure when there are no more "valid" ungrouped triangles Pick all the ungrouped triangles (lies inside adjacent strokes) - group and color them Compute the skeleton of this colored group, and fit cubic Bezier curves

Sketch Simplification - Color by numbers

Perception plays an important role in simplification - Not available in Automatic triangle grouping Design sketches usually have construction lines Idea: Make users annotate the parts that should be grouped

Playful interface: Ask the user to give same color on the opposite sides of a required stroke

And we already know how to do it!!! - Delaunay painting

Color by numbers - Complete procedure

Color by numbers - Demo

Color by numbers - Results

Reconstruction from Sketches

Outline

TEL AVIV 2022

Topic: Shape Characterization

- Shape/Region Reconstruction
- HVS based Algorithms
- Delaunay based Algorithms
- Sampling Models
- Evaluation Practices
- Future Directions

Presenter:

Jiju Peethambaran
Assistant Professor
Saint Mary's University, Halifax

Shape Characterization or Region Reconstruction

- Given a finite set of points sampled from a planar object or region, construct a polygonal boundary that best approximates the object or region

- Inputs are known as dot pattern/area samples/region samples
- Outputs: graphs or polygons
- Compared to curve reconstruction, more signals (or samples) about the shape is available

Applications

TEL AVIV 2022

- Computer graphics- geometric modeling ${ }^{[1]}$

(a)

(d)

Figure : (a) Points on surface with constraints, (b) Points in parametric 2D space, (c) Reconstruction, (d) Trimmed patch

- Identification of island failure regions in the design space of reliability-based crash optimization ${ }^{[2]}$

[1] Sundar et al. 2014, "Foot point distance as a measure of distance computation between curves and surfaces", Computers \& Graphics [2] Ganapathy et al. 2015, Alpha shape-based design space decomposition for island failure regions in reliability-based design", Struct. Multidisc.

Applications

- Map generalization- e.g., aggregation of buildings to form single polygon ${ }^{[3]}$

- Outline of trees or flock of birds ${ }^{[4]}$

[3] Roth et al. 2014, "a typology of operators for maintaining legible map designs at multiple scales", Cartographic Perspectives [4] Pandey et al. 2021, "Towards Video based Collective Motion Analysis through Shape Tracking and Matching", IET Electronic Letters

Challenges

TEL AVIV 2022

- III-posed/Vague problem ${ }^{[5]}$ - a precise mathematical definition for 'shape' is almost impossible
— Rich variety of shapes and forms
— Heterogeneity of point set sampling (density and distribution)
- Different interpretations for 'shape' based on human cognition, visual perception and application demands

[5] Edelsbrunner 1998, "Shape Reconstruction with Delaunay Complex", LATIN

Region Reconstruction Criteria ${ }^{[6]}$

- Should every member fall within the region or outliers permitted?

- Should any points fall on the boundary, or they must fall in the interior?

[6] Galton et al. 2006, "What is the Region Occupied by a Set of Points?", GIScience

Region Reconstruction Criteria ${ }^{[6]}$

- Should the region boundary be polygonal, or can it be smooth and curved?

- Should the region boundary be a simple polygon?

[6] Galton et al. 2006, "What is the Region Occupied by a Set of Points?", G/Science

Classification

Human Visual Perception

- Gestalt Laws of visual perception

Proximity

Closure

DISCUR ${ }^{[7]}$

- A vision function that encodes p's relation to T_{q} and the edge (r, q)

$$
E\left[p, T_{q}\right]=h_{d} \frac{h}{s}\left(1+\frac{h_{d}}{\sigma_{d}}\right)^{\frac{\sigma_{d}}{h_{d}}}
$$

- If $\mathrm{d}(\mathrm{p}, \mathrm{q})<\mathrm{E}\left[\mathrm{p}, \mathrm{T}_{\mathrm{q}}\right]$, connect p to q
- Parameter free algorithm

- Open/closed curves, multiple curves, sharp corners
- Dense sampling at sharp corners

A failure case

$\mathrm{VICUR}^{[8]}$

- DISCUR limitation: arbitrary selection of candidate points
- Vision function that encodes proximity and continuity

$$
E\left[p, T_{p_{1}}\right]=\left[c\left(\frac{\alpha_{\mathrm{s}}}{\bar{\alpha}}-1\right)^{2}+\left(\frac{1-c}{4}\right)\left(\frac{d_{\mathrm{s}}}{\bar{d}+\sigma}\right)^{2}+1\right]^{-1}
$$

- Candidate point with highest E value is connected
- Sensitive to parameters, e.g., c balances the smoothness and nearness

VICUR result [8]

Simple Shape ${ }^{[9]}$

- Shape according to HVS based on how the concavities are perceived
- Start from the convex hull and carve out the concavity by replacing outer edges by two new edges
- Edge selection is based on
— Closeness criteria
— Edge length criteria

— Angular constraints (angle (EAG)- angle(EGA) must be minimum)

Simplicial Complex

TEL AVIV 2022

- k-simplex $\left({ }_{\sigma_{k}}\right)$: non-degenerate convex hull of $\mathrm{k}+1$ geometrically distinct points in in R^{d} where $k<=d$.

- Simplicial Complex:

A simplicial complex, \mathcal{K} is a set containing finitely many simplices that satisfies the following two restrictions:

- \mathcal{K} contains every face of every simplex in \mathcal{K};
- For any two simplices, $\sigma, \tau \in \mathcal{K}$, their intersection $\sigma \cap \tau$ is either empty or a common face of σ and τ.

Regular Simplicial Complex

- Regular 2-simplicial complex:

A simplicial 2-complex \mathcal{K}_{2} is said to be regular if it satisfies the following conditions:

- All the points in \mathcal{K}_{2} are pairwise connected by a path on the edges.
- It does not contain any junction points, dangling edges or bridges.

(a)

(b)

Delaunay Complex

- Given a finite set of points S in R^{d}, Delaunay complex is a simplicial complex DT(S) consisting only of:

\square
all d-simplices whose circumspheres are empty of input points
— all k-simplices which are faces of other simplices in $\operatorname{DT}(S)$

Alpha Shape

TEL AVIV 2022

- "Shape formed by a set of points"
- Ice Cream Carving Analogy ${ }^{[\$]}$
(Ice cream mass occupied in R^{d} and chocolate points
- Sphere formed ice cream spoon

C Carve out ice cream without bumping into the chocolate points
\square Carving spoon of small radius \square points
\square Carving spoon with huge radius \square convex hull

Image courtesy: CGAL Alpha shapes
[\$] H. Edelsbrunner and E. P. Mücke. Three-dimensional alpha shapes. ACM Trans. Graph., 13(1):43-72, January 1994.

Alpha Shape ${ }^{\text {Iol }}$

- α_{-}exposed simplex: A k-simplex is α - exposed if there exists an empty

$$
\sigma_{k}=\partial b \cap S
$$

DEFINITION The boundary ∂S_{α} of the α-shape of the point set S consists of all k-simplices of S for $0 \leq k<d$ which are α-exposed,

$$
\partial S_{\alpha}=\left\{\sigma_{k} \mid k \leq d,\left(v_{0}, v_{1}, \ldots, v_{k}\right) \subseteq S \text { and } \sigma_{k} \text { are } \alpha-\text { exposed }\right\}
$$

[10] Edelsbrunner et al. 1983, "On the shape of a set of points in the plane", IEEE Transactions on Information Theory
[11] Fischer K., "Introduction to Alpha Shapes", Technical Report, Stanford University

A-Shape ${ }^{[12]}$

- Let $\mathcal{A} \subseteq R^{2}$ is a finite set of points, S
- \mathcal{A}-shape ${ }^{\text {is generated by connecting }} p, q \in S$ if there is an empty circle that ravoco inrough p, q and a

$$
\in \mathcal{A}
$$

- Two parameter family of point sets

$$
\mathcal{A}=\mathcal{A}(\alpha, t)
$$

$\square_{t \in[0,1]}$ is a local density measure $t \in[0,1]$
$\square_{\alpha \geq 0}$ level of detail of the shape

Chi Shape ${ }^{\left[{ }^{2}\right]}$

TEL AVIV 2022

- Simple polygon that characterizes the shape of point set, S.
- Start with the Delaunay Triangulation of S.
- Repeatedly remove longest boundary edges greater than a threshold / subjected to regularity constraints.
- Generates a regular polygon that contains S.

Chi Shape

- How to select I?

$$
\lambda_{P}= \begin{cases}1 & \text { if } l \geqslant \max _{P} \\ \frac{l-\min _{P}}{\max _{P}-\min _{P}} & \text { if } \min _{P} \leqslant l<\max _{P} \\ 0 & \text { if } l<\min _{P}\end{cases}
$$

- Good characterization via normalized length parameier <ip $0.27<0.29$

$0.77<\lambda_{P} \leqslant 1.00$

 half-way between max-MST and min-MAX?

Characterization of object boundaries: Divergent Concavity ${ }^{1 / 4}$ =CCl
 TEL AVIV 2022

- Closed, planar and positively oriented curve

BT

- Inflection points and curvature
- Concave portion (green colored)
- BT-bi-tangent, BTP-bi-tangent points

Characterization of object boundaries: Divergent Concavity

- Closed, planar and positively oriented curve

BT

- Inflection points and curvature
- Concave portion (green colored)
- BT-bi-tangent, BTP-bi-tangent points
- Pseudo-concavity

Characterization of object boundaries: Divergent Concavity

- Extremal Vs Non-extremal BT

Characterization of object boundaries: Divergent Concavity

- Divergent pseudo-concavity

Characterization of object boundaries: Divergent Concavity

- If all the pseudo-concavities are divergent, then the curve is divergent

Divergent Concavity

- Implications ${ }^{[19]}$

Triangles in divergent concave region

Characterization of object boundaries: Divergent Concavity

- Triangles in divergent concave regions are:
- Obtuse
- Longest edge facing towards the extremal BT

Relaxed Gabriel Graph ${ }^{[5]}$

- Consists of all Gabriel edges and a few non-Gabriel edges
- RGG(S) retains a non-Gabriel edge (p, q) of DT(S) if it satisfies either of the following:
- Circumcenter of the Delaunay triangle $\triangle p q r$ for which (p, q) is the characteristic edge, lies internal to $\partial R G G(S)$.
- Removal of (p, q) violates regularity in $\operatorname{RGG}(\mathrm{S})$.

[15] Peethambaran et al. 2015, "A nonparametric approach to shape reconstruction from planar point sets through Delaunay filtering", Computer Aided Design

Relaxed Gabriel Graph

- Hole structure: fat triangle surrounded by sets of thin triangles

(d)

(g)
(h)
(i)

Relaxed Gabriel Graph

- Order the boundary triangles based on their circum-radii (priority queue)
- Remove the boundary triangles if they are deletable
deletable \square circum-center lie outside the intermediate boundary and the removal does not violate regularity of the simplicial complex.
- $O(n \log n)$ complexity

EC-shape ${ }^{[16]}$

- Exterior triangle and exterior edge
- Circle constraint: Non-empty diametric, chc

[16] Methirumangalath et al. 2015, "A unified approach towards reconstruction of a planar point set.", Computers \& Graphics

EC-shape

TEL AVIV 2022

- Remove the exterior edges if it satisfy circle constraints and regularity constraints
- Illustration:
- Construct Delaunay

EC-shape

TEL AVIV 2022

- Remove the exterior edges if it satisfy circle constraints and regularity constraints
- Illustration:
- Non-empty diametric circle
- Empty diametric circle and non-empty midpoint circles

(f)

(g)

EC-shape

TEL AVIV 2022

- Remove the exterior edges if it satisfy circle constraints and regularity constraints
- Illustration:
- Empty diametric and non-empty chord circles
- All circles empty

(k)

(1)

EC-shape

- Final shape
- Under r-sampling, EC-shape is
homeomorphic to a simple closed curve

CT-shape ${ }^{\left[{ }_{77}\right]}$

TEL AVIV 2022

- Coordinated triangles: If the circumcenters of neighboring triangles lie on the same half plane made by the shared edge
- Skinny triangles: non-obtuse triangle with ba
 le distance between its circumcenter and incenter
- Degree constraints: for vertices with c..............rter edges are retained.
[17] Thayyil et al. 2020, "An input-independent single pass algorithm for reconstruction from dot patterns and boundary samples.", Computers Aided Geometric Design

CT-shape

- Mark all the shared edges of the coordinated triangles, two longer edges of the skinny triangles
- Create a graph consisting of all unmarked edges
- Apply degree constraints to get the final shape

- Theoretical guarantees under r-sampling

Sampling Models: r-sampling

- A point set S sampled from an object O is said to be r-sample if
— Every pair of adjacent boundary samples p, q lies at a distance of at most $2 r$.
— Every pair of samples p, q from the interior of O lies at a minimum distance of $2 r$.

(a). r-sampling
(b). Point samples

Sampling Models: Directed Boundary Sample

- Directed boundary sample is an r-sampling of object O which possess a divergent boundary
- Theoretical analysis and topological correctness of RGG is provided under directed boundary sample
- Lemma: Let S be a (r, \uparrow)-sample of an object $O, \partial R G G(S)$ contains an edge between every pair of adjacent samples of $\partial 0$.

Sampling Models: Minimal Reach Sampling

- Interval $I(p)=\left[p_{0}, p_{1}\right]$ is the set of curve points between p_{0}, and p_{1}
- Reach of a curve interval I: inf Ifs(p):p \in

Sampling Models: Minimal Reach Sampling ${ }^{[18]}$

- Consider pseudo-concavities with extremal bi-tangent points as the intervals
- Local feature size is computed w.r.t exterior medial axis
- Compute the minimum reach of γ all the pseudo-concave intervals
- MRS: the closest neighboring point of any p in S lies at exactly
γ

Minimum Reach $=d_{3}=\min \left(d_{1}, d_{2}, d_{3}\right)$
[18] Thayyil et al. 2021, "A sampling type discernment approach towards reconstruction of a point set in $\mathrm{R}^{2 "}$, Computers Aided Geometric Design

Evaluation Practices: L^{2} error norm

- Quantitative analysis based on L^{2} error norm ${ }^{[13]}$

$$
L^{2} \text { error norm }=\frac{\operatorname{area}((O-R e) \cup(R e-O))}{\operatorname{area}(O)}
$$

O: original object, Re: reconstructed polygon

- L^{2} error norm of zero \square both the areas are equal, and the boundaries are structurally alike.

Evaluation Practices: Feature based Comparisons

- Typical features: simple closed curve, multiple components, holes, outliers, sharp corners

Evaluation Practices: Point Set Density

Image Courtesy: [18]

Evaluation Practices: Point Distributions

- DBDI: dense boundary and interior
- DBSI: sparse interior, dense bound
- SBDI: sparse boundary, dense int.
- SBSI: sparse boundary \& interior
- Other options: truly random, semi-random etc.
- Not robust to noise/outliers

Image Courtesy: [18]

Chi Shape Software ${ }^{\left[{ }^{[3}\right]}$

- Point set generation of English letters and country maps

Other Software

TEL AVIV 2022

- Alpha shape in CGAL Library
- C++ and CGAL predicates

Sl. No	Algorithm	URL
1	CT-shape	https://github.com/agcl-mr/Reconstruction-CTShape
2	Petal ratio	https://github.com/agcl-mr/Reconstruction-Discern
3	Shape-hull graph	https://github.com/jijup/Shapehull2D
4	EC-shape	https://github.com/ShyamsTree/HoleDetection

Future Directions

- Improving and simplifying sampling conditions, especially for non-smooth and self-intersecting curves, and region reconstruction
- Reconstructing curves from hand drawn sketches with varying stroke thickness and intensity
- Deep learning on curves and shapes (similar to 2D medial axis)
- Reconstruct parametric curves instead of piece-wise polygonal curves
- Reconstruction of surfaces from networks of 3D curves
- Kinetic shapes: Shapes of moving points?

Acknowledgements/Collaborations

Collaborators:
-Prof. Ramanathan Muthuganapathy
-Prof. Tamal Dey
-Dr. Stefan Ohrhallinger
-Dr. Amal Dev Parakkat
-Dr. Subhasree Methirumangalath
-Dr. Safeer Babu Thayyil
Acknowledgements:
-Prof. Edelsbrunner
-Prof. Nina Amenta
-Prof. Antony Galton
-Prof. Matt Duckham
-Prof. Mahmoud Melkemi and all other authors of various papers discussed in this tutorial

Thank you!!!
 Questions?

