

Outline and Shape Reconstruction in 2D ECCV 2022 TUTORIAL

Stefan Ohrhallinger, Jiju Peethambaran, Amal Dev Parakkat

Technische Universität Wien, Austria Saint Mary's University, Canada LTCI- Telecom Paris, Institut Polytechnique de Paris, France

Tutorial Outline

Intro & Proximity Graphs

Curve Reconstruction

Benchmark & Demo

Sketch Reconstruction

Visual Perception of Shapes

Shape Characterization

Stefan Ohrhallinger - 25 minutes

Stefan Ohrhallinger - 25 minutes, Q&A 5 minutes Amal Dev Parakkat - 25 minutes, break 15 minutes Amal Dev Parakkat - 25 minutes, Q&A 5 minutes Jiju Peethambaran - 25 minutes

Jiju Peethambaran - 25 minutes, Q&A 5 minutes

Topic: Intro & Proximity Graphs

Motivation

Proximity Graphs

Presenter:

Stefan OHRHALLINGER

Researcher

Institute of Visual Computing & Human-Centered Technology

Introduction

The Problem

Connect the Dots

Now try without the numbers

Reconstructed polygon

Outliers, multiple curves

Noisy sampling

Non-manifold curves

How to Choose a Suitable Algorithm?

DISCUR VICUR StretchDenoise α-shapes Shape-hull Graph Leeooa γ-neighborhood ec-Shape [AMoo] Leno6 GathanG NN-Crust Connect₂D Crust [CFG*05] Peel FitConnect [Rup14] β-skeleton Crawl r-regular shapes $[WYZ*_{14}]$ Gathan Concorde HNN-Crust Conservative Crust [FRo1] EMST Ball-pivoting **Optimal** Transport Robust HPR [Gie99] [Aro98] Voronoi Labeling Edge exchanging [Hiyo9]

A Benchmark Helps to Decide [OPP*21]

Evaluating algorithms on challenging curves, highlighting strengths & weaknesses Quantitative analysis on: reconstruction quality & run-time

Scope of this Tutorial

We categorize 36 curve reconstruction algorithms:

Boundary samples Area samples Implicit curve Polygonal curve

Taxonomy of Algorithms

Input Data: Properties

Non-uniform sampling: determines feature size

Outliers: needs filtering

Noisy sampling: needs fitting

Reconstruction Output: Properties

Manifold

deg(v)≤2

Open curves

Multiply Connected

E<0.5

Guarantees

O(n log n) Time Complexity

Input capabilities: e.g., noise, outliers, non-uniformity

DISCUR VICUR StretchDenoise α-shapes Shape-hull Graph [Leeooa] γ-neighborhood ec-Shape [AMoo] Leno6 GathanG NN-Crust Connect₂D Crust [CFG*05] Peel FitConnect [Rup14] β-skeleton Crawl r-regular shapes $[WYZ*_{14}]$ Gathan Concorde HNN-Crust Conservative Crust [FR01] EMST Ball-pivoting **Optimal** Transport Robust HPR [Gie99] [Aro98] Voronoi Labeling Edge exchanging [Hiyo9]

DISCUR VICUR StretchDenoise α-shapes Shape-hull Graph Leeooa γ-neighborhood ec-Shape [AMoo] Leno6 GathanG NN-Crust Connect₂D Crust [CFG*05] Peel FitConnect [Rup14] β-skeleton Crawl r-regular shapes $[WYZ*_{14}]$ Gathan Concorde HNN-Crust Conservative Crust [FRo1] EMST Ball-pivoting **Optimal** Transport Robust HPR [Gie99] [Aro98] Voronoi Labeling Edge exchanging Hiyo9

Definitions Curve

Curve Σ : Simple closed and planar

Smooth curve C: (collection of) twice-differentiable bounded 1-manifolds $\in \mathbb{R}^2$ Sample set P: n points sampled on Σ or C

Definitions Sampling

Medial axis M for C [Blum67]: Closure of all points in \mathbb{R}^2 with ≥ 2 closest points in C

Local feature size lfs(p) [Rup93]: Euclidean distance from p to its closest point $m \in M$

ε-Sampling [ABE98]:

$$\forall p \in C, \exists s \in S: \|p, s\| < \varepsilon$$

lfs(p)

Definitions Sampling

Reach of a curve interval I: inf lfs(p) : $p \in I$ [OMW16]

 ρ -Sampling [OMW16]:

 $\forall p \in C, \exists s \in S: ||p, s|| < \rho$ reach(p)

Proximity Graphs for a Point Set

Minimum Spanning Tree: cycle-free graph spanning P with minimum edge weights Relative Neighborhood Graph: \forall (p,q): d(p, q) \leq d(p, x), d(p, q) \leq d(q, x) \forall x \in P, x \neq p,q Gabriel Graph: All (p,q) with p,q \in empty ball centered at (p,q) Delaunay Triangulation: circumcircles empty of P

More Proximity Graphs

EMST (d≥1) -> BC_o (d≥2) Boundary Complex Connect2D [OM13] SIG edges: r=|v,NN1| overlap DT ∖ divergent concave Sphere-of-Influence Graph Shape-Hull Graph [Toussaint88] [PM15]

Topic: Curve Reconstruction

Graph-based Algorithms

Feature size based Algorithms

Presenter:

Stefan OHRHALLINGER

Researcher

Institute of Visual Computing & Human-Centered Technology

Algorithms Based on Graphs - Overview

a-shapes [EKS83], Ball-pivoting [BB97]

- β-skeleton [KR85]
- **ɣ**-neighborhood [Vel92]
- Sculpting [Boi84a]

EMST [FMG94], edge exchange [OM11] and inflating [OM13]

r-regular shape [Att97]

Shape-hull graph [PM15b], Voronoi labeling [PPT*19]

```
Crawl thru neighbors [PM16]
```

a-Shapes [EKS83]

Disks of radius 1/a

Generalization of convex hull (a=o)

Extracting manifolds [BB97] Later: Ball-pivoting algorithm [BMR*99]

β-Skeleton [KR85]

y-Neighborhood [Vel92]

A unification of 12 graphs including convex hull, Delaunay triangulation, Gabriel graph, RNG, MST, nearest neighbor graph, α -shapes and β -skeletons.

 $\mathbf{y}(\mathbf{y}_{0},\mathbf{y}_{1})$ is defined for $-\mathbf{I} < \mathbf{y}_{0}, \mathbf{y}_{1} < \mathbf{I}$ and $|\mathbf{y}_{0}| \leq |\mathbf{y}_{1}|$

Contains edges with empty neighborhood defined by disks using γ_0, γ_1

It can also reconstruct shapes not in the Delaunay graph

Sculpting [Boi84a]

EMST-based Reconstruction [FMG94]

Proves that EMST reconstructs (open) curve from sufficiently dense samples

EMST-based Edge-Exchange Reconstruction [OM11]

Transform EMST with "snap" and "move" operations - combinatorial complexity

EMST-based Inflating Reconstruction [OM13]

r-regular Shapes [Att97]

An *r*-regular shape has curvature $\geq r$ everywhere

Requires uniform sampling of boundary

Boundary consists of edges shared by Delaunay circumcircles with property of angle<threshold depending on uniform sampling density and curvature *r*

Shape-Hull Graph [PM15b]

Reconstructs smooth curves with divergent concavity

Eliminates Delaunay triangles with circumcenter outside boundary

(c)

Voronoi Labeling [PPT*19]

Incrementally labels orientation from estimated normals via Voronoi poles

Guaranteed ϵ -sampling as well as

bi-tangent neighborhood convergence

Also computes medial axis

Crawl Thru Neighbors [PM16]

Connects neighbors greedily, heuristic decides curve closed/open

Parameter-free: handles open+multiple curves, holes and outliers

Algorithms Based on Graphs - Conclusion

a-shapes [EKS83], Ball-pivoting [BB97], β-skeleton [KR85], γ-neighborhood [Vel92], Sculpting [Boi84a], EMST [FMG94], edge exchange [OM11], inflating [OM13], *r*-regular shape [Att97], Shape-hull graph [PM15b], Voronoi labeling [PPT*19], Crawl thru neighbors [PM16]

They often require a global parameter

Good results mostly for uniformly sampled point density

Delaunay graph is not guaranteed to contain the reconstruction

Reconstruction is often slow or trapped in local minima

Algorithms Based on Feature Size - Overview

Crust [ABE98]

Anti-Crust [Gol99]

NN-Crust [DK99]

Conservative Crust [DMR99]

Lenz [Leno6]

Hiyoshi [Hiyo9]

HNN-Crust [OMW16]

SIGDT [MOW22]

Crust [ABE98]

Seminal paper: feature sized reconstruction - no more uniform sampling required

 $\epsilon \approx 1$

extracts DG and Voronoi graph Proof: $\varepsilon < 0.252 \cong \alpha > 151^{\circ}$

Anti-Crust [Gol99]

Extracts the Crust in a single step from the Delaunay graph

Also extracts the medial axis skeleton
NN-Crust [DK99]

Simple and elegant improvement of Crust:

First, connects point to nearest neighbor

Then to nearest neighbor in half-space s.t. angle > 90°

Proof: $\epsilon < {\rm 1/3}$, corresponding to $\alpha > {\rm 141}^{\rm o}$

Conservative Crust [DMR99]

Filters edges from Gabriel graph Robust to outliers Collections of open/closed curves But requires a parameter Misses some sharp corners

Crust NN-Crust Conservative Crust

Lenz: Probe Reconstruction [Leno6]

Starts with a seed edge and connects edges with a probe shape

Requires an angle parameter

Permits self-intersections

Claims ε < 0.48 but no proof

Hiyoshi: TSP [Hiyo9]

Adapts Traveling Salesman Problem to multiple connected curves Transforms it into maximum-weight 2-factor problem (solvable in P time) Proof for: $\varepsilon < \frac{1}{3}$, u < 1.46 (relative uniformity of adjacent edge lengths)

HNN-Crust [OMW16]

Simple variant of NN-Crust, reducing angle from 90° to 60°:

First, connect nearest neighbor
Construct half-space
Connect to nearest neighbor
in opposite half-space
ε < 0.47

SIGDT [MOW22]

I) SIGDT=SIG \cap DT

3) Inflating creates a manifold boundary

2) Enforce $d \ge 2$

4) Sculpting interpolates interior vertices: ε<0.5, u<2

Algorithms Based on Feature Size - Conclusion

Crust [ABE98], Anti-Crust [Gol99], NN-Crust [DK99], Conservative Crust [DMR99]

Lenz [Leno6], Hiyoshi [Hiyo9], HNN-Crust [OMW16], SIGDT [MOW22]

Guarantees on sampling condition Work well for non-noisy point sets

Outline

Topic: Benchmark and Demo

To be precise:

- What all our benchmark has?
- How to use our benchmark?
- What all we evaluated?
- What are our conclusions?

Presenter:

Amal Dev PARAKKAT

Assistant Professor

Institut Polytechnique de Paris

amal.parakkat@telecom-paris.fr

The Benchmark

Our benchmark contains: Algorithms, Dataset, Sampling tools, Evaluation criterias, and Test scripts

The Benchmark - Algorithms

We included 15 publicly available algorithms

Contains algorithms from late 90s (Crust family) to 2018

• CRUST, NNCRUST, CCRUST, GATHAN, GATHANG, LENZ, DISCUR, VICUR, OptimalTransport, Connect2D, Crawl, HNNCRUST, FitConnect, StretchDenoise, Peel

We removed OPTIMALTRANSPORT from experiments since it simplifies curves

The Benchmark - Dataset

Our dataset contains more than 2500 point sets:

- Classic data Collected from various papers (using WebPlotDigitizer)
- Image data Samples obtained from the silhouette images (taken from MPEG7 CE Shape-1, Edinburgh, 1070-shape image databases)
- Synthetic data Analytical (shapes with sharp corners, & self-intersections) and ε -sampled points

The Benchmark - Dataset

We also provide ground truths (linear approximation) as:

- Ordered vertices: A loop of vertices for simple closed curves
- Edge list: List of edges for complex curves

Grouped under the following categories:

Moreover, we provide an interactive ground truth generation tool

The Benchmark - Sampling tools

LFS-sampling tool:

- Samples are made from input Bezier curve representation
- Maximal empty disks are computed to create a medial axis approximation
- Estimate LFS at each sample and use it to pick a set of samples satisfying the ε -sampling condition

Contour sampling tool:

- Binary image contour is extracted to generate a set of samples
- Starting from a random sample, iteratively remove all samples within a user defined distance r

The Benchmark - Evaluation criteria

Let closest point correspondences be D and D' of two curves C and C'

where M and M' be the respective non-bijective shortest distance maps

We use the following metrics to compare two curves:

$$H_D(C,C') = \max\left\{\max_{(s,t)\in D} \|s-t\|, \max_{(s',t')\in D'} \|s'-t'\|\right\}$$

$$RMS_D(C,C') = \sqrt{\frac{1}{N}\left(\sum_{(s,t)\in D} \|s-t\|^2 + \sum_{(s',t')\in D'} \|s'-t'\|^2\right)}$$

$$RMS_D(C,C') = \sqrt{\frac{1}{N}\left(\sum_{(s,t)\in D} \|s-t\|^2 + \sum_{(s',t')\in D'} \|s'-t'\|^2\right)}$$

$$RMS_D(C,C') = \sqrt{\frac{1}{N}\left(\sum_{(s,t)\in D} \|s-t\|^2 + \sum_{(s',t')\in D'} \|s'-t'\|^2\right)}$$

$$RMS_D(C,C') = \sqrt{\frac{1}{N}\left(\sum_{(s,t)\in D} \|s-t\|^2 + \sum_{(s',t')\in D'} \|s'-t'\|^2\right)}$$

$$RMS_D(C,C') = \sqrt{\frac{1}{N}\left(\sum_{(s,t)\in D} \|s-t\|^2 + \sum_{(s',t')\in D'} \|s'-t'\|^2\right)}$$

$$RMS_D(C,C') = \sqrt{\frac{1}{N}\left(\sum_{(s,t)\in D} \|s-t\|^2 + \sum_{(s',t')\in D'} \|s'-t'\|^2\right)}$$

$$RMS_D(C,C') = \sqrt{\frac{1}{N}\left(\sum_{(s,t)\in D} \|s-t\|^2 + \sum_{(s',t')\in D'} \|s'-t'\|^2\right)}$$

$$RMS_D(C,C') = \sqrt{\frac{1}{N}\left(\sum_{(s,t)\in D} \|s-t\|^2 + \sum_{(s',t')\in D'} \|s'-t'\|^2\right)}$$

$$RMS_D(C,C') = \sqrt{\frac{1}{N}\left(\sum_{(s,t)\in D} \|s-t\|^2 + \sum_{(s',t')\in D'} \|s'-t'\|^2\right)}$$

$$RMS_D(C,C') = \sqrt{\frac{1}{N}\left(\sum_{(s,t)\in D} \|s-t\|^2 + \sum_{(s',t')\in D'} \|s'-t'\|^2\right)}$$

$$RMS_D(C,C') = \sqrt{\frac{1}{N}\left(\sum_{(s,t)\in D} \|s-t\|^2 + \sum_{(s',t')\in D'} \|s'-t'\|^2\right)}}$$

The Benchmark - Test scripts

Driver program can be run with various arguments and options

A set of test scripts for quantitatively & qualitatively evaluate the algorithms

Each test script has a list of algorithms and test data, designed for the specific experiment: • run-sampling.sh: ε-sampled [ABE98] test data

- **run-noisy.sh:** perturbed with uniform noise
- **run-lfsnoise.sh:** perturbed with lfs-based noise
- run-outliers.sh: added outlier points
- **run-manifold.sh:** whether reconstruction is a manifold
- run-sharp-corners.sh: sharp feature curves
- run-open-curves.sh: open curves
- run-multiple-curves.sh: multiply connected curves
- run-intersecting.sh: curves with intersections

Evaluation - Sampling density as ε -sampling

Evaluation - Noise robustness (BB Diagonal)

Evaluation - Noise robustness (LFS)

Evaluation - Noise robustness (ε -sampling + LFS)

Evaluation - Outlier

Evaluation - Running time

Evaluation - Overview

In short, we evaluate the robustness of various algorithms based on:

- Sampling density as ε-sampling
- Noise robustness as δ of bounding box diagonal
- Noise robustness as δ of lfs
- Noise+sampling density as ε -sampling and δ of lfs
- Outliers robustness in % of samples
- Average runtimes (in s)

Evaluation - Summary

Curve/Input feature	Best two algorithms in order
Uniform Noise	DISCUR, VICUR
Non-uniform Noise	STRETCHDENOISE, CONNECT2D
Outliers	HNN-CRUST, CRUST
Non-uniform sampling	HNN-CRUST, PEEL
Runtime	NN-CRUST, GATHAN1
Manifold curves	CONNECT2D, CRAWL
Non-manifold curves	Crust, Lenz
Sharp features	GATHANG, CONNECT2D
Open curves	VICUR, HNN-CRUST
Multiple curves	PEEL, HNN-CRUST

Outline

Topic: Sketch Reconstruction

To be precise:

- Sketching
- Sketching and reconstruction
- Sketch completion
- Rough sketch simplification

Presenter:

Amal Dev PARAKKAT

Assistant Professor

Institut Polytechnique de Paris

amal.parakkat@telecom-paris.fr

Sketching

Sketching is an integral part of everyone's life Sketching comes across us in various stages of our life:

- Kids playing with pencils and paints
- Intrinsic part of various academic curriculums
- Professional usage

MOREOVER, IT'S FUN!!!!!

© Yulia et al., Shutterstock 68

Relevance of sketch processing in Computer Graphics

Mountain creation

Printable models from VR drawings

3d modeling & editing

Jewellery crafting

Story telling

Expressive sketch-based animation

Sketching animation in VR

Sketch-based developable surfaces

© Respective authors 69

Sketching and Reconstruction

Sketching and reconstruction problem are closely related

Reconstructing from:

• Simple scanned sketch

@ Bessmeltsev et al.

Sketching and Reconstruction

Sketching and reconstruction problem are closely related

Reconstructing from:

- Simple scanned sketch
- Missing strokes

@ de Goes et al.

Sketching and Reconstruction

Sketching and reconstruction problem are closely related

Reconstructing from:

- Simple scanned sketch
- Missing strokes
- Noisy sketch

Sketching and Reconstruction

Sketching and reconstruction problem are closely related

Reconstructing from:

- Simple scanned sketch
- Missing strokes
- Noisy sketch
- Dirty sketches

Sketch completion and Sketch simplification

We look at two important subproblems:

Sketch completion and sketch simplification

We won't have a detailed discussion, but a very quick and brief overview of:

- A.D. Parakkat, P. Memari, M.P. Cani, "Delaunay Painting: Perceptual Image Colouring from Raster Contours with Gaps" Computer Graphics Forum 2022
- A.D. Parakkat, P. Madipally, H.H. Gowtham, M.P. Cani, "Interactive Flat Coloring of Minimalist Neat Sketches" Eurographics 2020 (Short paper)
- A.D. Parakkat, M.P. Cani, K. Singh, "Color by Numbers: Interactive Structuring and Vectorization of Sketch Imagery" ACM CHI 2021
- A.D. Parakkat, U.B. Pundarikaksha, R. Muthuganapathy, "A Delaunay triangulation based approach for cleaning rough sketches" Computers & Graphics 2018

Sketch completion

The input is a set of disconnected sketch strokes and is asked to appropriately connect them (in other words, filling the gaps in a line art)

Sketch completion - Sketch coloring

Using Flood-fill algorithm

Distinct artistic feeling:

- Le Grand Méchant Renard et autres contes...
- Ernest & Celestine

Sketch completion - Sketch Coloring

COLOR HINTS

DESIRED COLORING

Infer the unknown boundary!!!

Sketch completion - Delaunay Painting

Assumption - Required boundary is present in the Delaunay Triangulation (Delaunay confirming) Problem boils down to connecting appropriate points in Delaunay Triangulation

Delaunay Painting - Defining flow

Delaunay Painting - Defining flow

Delaunay Painting - Defining flow

Delaunay Painting - Creating a graph

Weighted dual graph Create a color_strength for all vertices and initialize it as 'o'

Delaunay Painting - Logic

Recursive color spreading Color strength updation Priority queue based exploration

Delaunay Painting - Updation

Delaunay Painting - Demo

Delaunay Painting - Demo

Delaunay Painting - We can do a lot more

Are we missing something? Too much work if the sketch has additional information like shading Not aesthetically appealing

Delaunay Painting - Additional functionalities

How to address them? Too much work if the sketch has additional information like shading - Diffuse colors Not aesthetically appealing - Give finishing using an aesthetic curve completion

Delaunay Painting - Color Diffusion

Presence of shading information (hatching) makes the coloring process time consuming Artists usually use a comparatively smaller brush size for shading/hatching

> Bipartite the regions into two - colored and uncolored Recursively update the bipartition

Delaunay Painting - Aesthetic curve completion

Splitting points - Edges having different colors on its associated triangles Sharp corner or smooth curve?

Decision based on tangent approximation

Delaunay Painting - Sharp corner heuristics

Angle constraint - angle between tangents less than $\pi/3$ Perpendicular constraint - intersection to edge distance is less than 2^{*} ||edge|| Linearity constraint - pixels near the endpoints are linearly arranged

All three constraints are qualified -> sharp corner, else -> smooth curve

Delaunay Painting - SIMVC curves

Perceptually pleasing contour Scale Invariant Minimum Variation Curve - to form more circular arcs

$$E_{SIMVC-Entem} = \frac{\left(\int ds\right)^5}{\left\|B - A\right\|^2} \int \left(\frac{d\kappa(s)}{ds}\right)^2 ds$$

Delaunay Painting - SIMVC curves

Perceptually pleasing contour Scale Invariant Minimum Variation Curve - to form more circular arcs

$$E_{SIMVC-Entem} = \frac{\left(\int ds\right)^5}{\left\|B - A\right\|^2} \int \left(\frac{d\kappa(s)}{ds}\right)^2 ds \text{ How small the curve is?}$$

Delaunay Painting - SIMVC curves

Perceptually pleasing contour Scale Invariant Minimum Variation Curve - to form more circular arcs

$$E_{SIMVC-Entem} = \frac{\left(\int ds\right)^5}{\left\|B - A\right\|^2} \int \left(\frac{d\kappa(s)}{ds}\right)^2 ds \text{ How much curved?}$$

Delaunay Painting - More Results

Delaunay Painting - Labelling medical images

Sketch Simplification

Sketch Simplification - Automatic triangle growing

Delaunay triangles inside regions will have a "fat triangle"

Delaunay triangles inside adjacent strokes will have only "thin triangles"

Overview:

100

Automatic triangle growing

Algorithm: Start from the largest "valid" ungrouped triangle Recursively group neighboring triangles until a "condition" is satisfied Restart the procedure

Automatic triangle growing

Stop the procedure when there are no more "valid" ungrouped triangles Pick all the ungrouped triangles (lies inside adjacent strokes) - group and color them Compute the skeleton of this colored group, and fit cubic Bezier curves

Sketch Simplification - Color by numbers

Perception plays an important role in simplification - Not available in Automatic triangle grouping Design sketches usually have construction lines Idea: Make users annotate the parts that should be grouped

Playful interface: Ask the user to give same color on the opposite sides of a required stroke

And we already know how to do it!!! - Delaunay painting

Color by numbers - Complete procedure

Grouping the strokes Finding the skeleton Constructing a curve network Bezier curve fitting

Color by numbers - Demo

Color by numbers - Results

Reconstruction from Sketches

Outline

Topic: Shape Characterization

- Shape/Region Reconstruction
- HVS based Algorithms
- Delaunay based Algorithms
- Sampling Models
- Evaluation Practices
- Future Directions

Presenter:

Jiju Peethambaran

Assistant Professor

Saint Mary's University, Halifax

Shape Characterization or Region Reconstruction

• Given a finite set of points sampled from a planar object or region, construct a polygonal boundary that best approximates the object or region

- Inputs are known as dot pattern/area samples/region samples
- **Outputs**: graphs or polygons
- Compared to curve reconstruction, more signals (or samples) about the shape is available

Applications

Opt.

• Computer graphics- geometric modeling^[1]

Figure : (a) Points on surface with constraints, (b) Points in parametric 2D space, (c) Reconstruction, (d) Trimmed patch

• Identification of island failure regions in the design space of reliability-based crash optimization^[2]

Sundar et al. 2014, "Foot point distance as a measure of distance computation between curves and surfaces", *Computers & Graphics* Ganapathy et al. 2015, Alpha shape-based design space decomposition for island failure regions in reliability-based design", *Struct. Multidisc.*

Applications

Map generalization- e.g., aggregation of buildings to form single polygon^[3]

• Outline of trees or flock of birds^[4]

[3] Roth et al. 2014, "a typology of operators for maintaining legible map designs at multiple scales", *Cartographic Perspectives*[4] Pandey et al. 2021, "Towards Video based Collective Motion Analysis through Shape Tracking and Matching", *IET Electronic Letters*

Challenges

- III-posed/Vague problem^[5] a precise mathematical definition for 'shape' is almost impossible
 - Rich variety of shapes and forms
 - Heterogeneity of point set sampling (density and distribution)
- **Different interpretations** for 'shape' based on human cognition, visual perception and application demands

[5] Edelsbrunner 1998, "Shape Reconstruction with Delaunay Complex", LATIN

Region Reconstruction Criteria^[6]

• Should every member fall within the region or outliers permitted?

• Should any points fall on the boundary, or they must fall in the interior?

[6] Galton et al. 2006, "What is the Region Occupied by a Set of Points?", GIScience

Region Reconstruction Criteria^[6]

• Should the region boundary be polygonal, or can it be smooth and curved?

• Should the region boundary be a simple polygon?

Classification

Human Visual Perception

• Gestalt Laws of visual perception

DISCUR^[7]

• A vision function that encodes p's relation to T_a and the edge (r, q)

$$E[p, T_q] = h_d \frac{h}{s} \left(1 + \frac{h_d}{\sigma_d} \right)^{\frac{\sigma_d}{h_d}}$$

- If $d(p, q) < E[p, T_q]$, connect p to q
- Parameter free algorithm
- Open/closed curves, multiple curves, sharp corners
- Dense sampling at sharp corners

DISCUR result

A failure case

[7] Zeng et al. 2008, "A distance-based parameter free algorithm for curve reconstruction", Computer Aided Design

VICUR^[8]

- DISCUR limitation: arbitrary selection of candidate points
- Vision function that encodes proximity and continuity

$$E[p, T_{p_1}] = \left[c\left(\frac{\alpha_s}{\bar{\alpha}} - 1\right)^2 + \left(\frac{1 - c}{4}\right)\left(\frac{d_s}{\bar{d} + \sigma}\right)^2 + 1\right]^{-1}$$

- Candidate point with highest E value is connected
- Sensitive to parameters, e.g., *c* balances the smoothness and nearness

VICUR result [8]

[8] Ngyuen et al. 2008, "A human-vision-based algorithm for curve reconstruction", Robotics and Computer-Integrated Manufacturing

Simple Shape^[9]

- Shape according to HVS based on how the concavities are perceived
- Start from the convex hull and carve out the concavity by replacing outer edges by two new edges
- Edge selection is based on
 - Closeness criteria
 - Edge length criteria

Angular constraints (angle (EAG)- angle(EGA) must

be minimum)

[9] Gheibi et al. 2011, "Polygonal shape reconstruction in the plane", IET Computer Vision

Spiral shape result

Simplicial Complex

 k-simplex(): non-degenerate convex hull of k+1 geometrically distinct points in in R^d where k <= d.

A simplicial complex, \mathcal{K} is a set containing finitely many simplices that satisfies the following two restrictions:

- \mathcal{K} contains every face of every simplex in \mathcal{K} ;
- For any two simplices, $\sigma, \tau \in \mathcal{K}$, their intersection $\sigma \cap \tau$ is either empty or a common face of σ and τ .

Regular Simplicial Complex

• Regular 2-simplicial complex:

A simplicial 2-complex \mathcal{K}_2 is said to be regular if it satisfies the following conditions:

- All the points in \mathcal{K}_2 are pairwise connected by a path on the edges.
- It does not contain any junction points, dangling edges or bridges.

Delaunay Complex

- Given a finite set of points S in R^d, Delaunay complex is a simplicial complex DT(S) consisting only of:
 - all *d*-simplices whose circumspheres are empty of input points
 - \square all *k*-simplices which are faces of other simplices in DT(S)

Alpha Shape

- "Shape formed by a set of points"
- Ice Cream Carving Analogy^[\$]
 - □ Ice cream mass occupied in R^d and chocolate points
 - □ Sphere formed ice cream spoon
 - Carve out ice cream without bumping into the chocolate points
 - □ Carving spoon of small radius □ points
 - □ Carving spoon with huge radius □ convex hull

Image courtesy: CGAL Alpha shapes

[\$] H. Edelsbrunner and E. P. Mücke. Three-dimensional alpha shapes. ACM Trans. Graph., 13(1):43–72, January 1994.

Image courtesy: [11]

Alpha Shape^[10]

DEFINITION The boundary ∂S_{α} of the α -shape of the point set *S* consists of all *k*-simplices of S for $0 \le k < d$ which are α -exposed,

$$\partial S_{\alpha} = \{ \sigma_k \mid k \leq d, (v_0, v_1, ..., v_k) \subseteq S \text{ and } \sigma_k \text{ are } \alpha - exposed \}$$

[10] Edelsbrunner et al. 1983, "On the shape of a set of points in the plane", *IEEE Transactions on Information Theory* [11] Fischer K., "Introduction to Alpha Shapes", *Technical Report, Stanford University*

A-Shape^[12]

- Let $\mathcal{A} \subset \mathbb{R}^2$ is a finite set of points, S
- A-shape is generated by connecting $p, q \in S$ if there is an empty circle that $p, q \in S$ $\in A$
- Two parameter family of point sets $\mathcal{A} = \mathcal{A}(\alpha, t)$
 - $\Box \quad \text{is a local density measure} \\ t \in [0,1]$
 - $\alpha \ge 0$ level of detail of the shape

[12] Melkemi et al. 2000, "Computing the shape of a planar points set.", Pattern Recognition

Chi Shape^[13]

- Simple polygon that characterizes the shape of point set, S.
- Start with the Delaunay Triangulation of S.
- Repeatedly remove longest boundary edges greater than a threshold / subjected to regularity constraints.
- Generates a regular polygon that contains S.

[13] Duckham et al. 2008, "Efficient generation of simple polygons for characterizing the shape of a set of points in the plane.", *Pattern* Recognition

 $0.38 < \lambda_P \leq 0.39$

Chi Shape

• How to select /?

$$\lambda_P = \begin{cases} 1 & \text{if } l \ge \max_P \\ \frac{l - \min_P}{\max_P - \min_P} & \text{if } \min_P \leqslant l < \max_P \\ 0 & \text{if } l < \min_P \end{cases}$$

• Good characterization via normalized length parameter $\frac{0.27}{100} \le 0.29$

half-way between max-MST and min-MAX?

Characterization of object boundaries: Divergent Concavity¹¹⁴

- Closed, planar and positively oriented curve
- Inflection points and curvature
- Concave portion (green colored)
- BT-bi-tangent, BTP-bi-tangent points

BT

[14] Peethambaran J. 2015, "Reconstruction of Water-tight Surfaces through Delaunay Sculpting", Computer Aided Design

- Closed, planar and positively oriented curve
- Inflection points and curvature
- Concave portion (green colored)
- BT-bi-tangent, BTP-bi-tangent points
- Pseudo-concavity

• Extremal Vs Non-extremal BT

• Divergent pseudo-concavity

• If all the pseudo-concavities are divergent, then the curve is divergent

Divergent Concavity

• Implications^[19]

Point set, S sampled from a divergent concave curve

DT(S)

Triangles in divergent concave region

[19] Peethambaran J. 2015, "Non-parametric shape reconstruction and volume constrained Polyhedronization of point sets", PhD thesis, IIT Madras

- Triangles in divergent concave regions are:
 - Obtuse
 - □ Longest edge facing towards the extremal BT

Relaxed Gabriel Graph^[15]

- Consists of all Gabriel edges and a few non-Gabriel edges
- RGG(S) retains a non-Gabriel edge (p, q) of DT(S) if it satisfies either of the following:
 - Circumcenter of the Delaunay triangle $\triangle pqr$ for which (p,q) is the characteristic edge, lies internal to $\partial RGG(S)$.
 - Removal of (p,q) violates regularity in RGG(S).

RGG(S)

[15] Peethambaran et al. 2015, "A nonparametric approach to shape reconstruction from planar point sets through Delaunay filtering", Computer Aided Design

Relaxed Gabriel Graph

• Hole structure: fat triangle surrounded by sets of thin triangles

Relaxed Gabriel Graph

- Order the boundary triangles based on their circum-radii (priority queue)
- Remove the boundary triangles if they are deletable

deletable circum-center lie outside the intermediate boundary and the removal does not violate regularity of the simplicial complex.

• O(n log n) complexity

EC-shape^[16]

- Exterior triangle and exterior edge
- Circle constraint: Non-empty diametric, chc.

- Remove the exterior edges if it satisfy circle constraints and regularity constraints
- Illustration:
- Construct Delaunay

- Remove the exterior edges if it satisfy circle constraints and regularity constraints
- Illustration:
- Non-empty diametric circle
- Empty diametric circle and non-empty midpoint circles

- Remove the exterior edges if it satisfy circle constraints and regularity constraints
- Illustration:
- Empty diametric and non-empty chord circles
- All circles empty

- Final shape
- Under r-sampling, EC-shape is homeomorphic to a simple closed curve

CT-shape^[17]

 Coordinated triangles: If the circumcenters of neighboring triangles lie on the same half plane made by the shared edge

incente

• Skinny triangles: non-obtuse triangle with ba between its circumcenter and incenter

[17] Thayyil et al. 2020, "An input-independent single pass algorithm for reconstruction from dot patterns and boundary samples.", *Computers Aided Geometric Design*

C₁

circumcenter

b < d

ie distance

а

CT-shape

 Mark all the shared edges of the coordinated triangles, two longer edges of the skinny triangles

- Create a graph consisting of all unmarked edges
- Apply degree constraints to get the final shape
- Theoretical guarantees under r-sampling

Sampling Models: r-sampling

- A point set S sampled from an object O is said to be r-sample if
 - Every pair of adjacent boundary samples p, q lies at a distance of at most 2r.
 - Every pair of samples p, q from the interior of O lies at a minimum distance of 2r.

Sampling Models: Directed Boundary Sample

- Directed boundary sample is an r-sampling of object O which possess a divergent boundary
- Theoretical analysis and topological correctness of RGG is provided under directed boundary sample

 Lemma: Let S be a (r, ↑)-sample of an object O, ∂RGG(S) contains an edge between every pair of adjacent samples of ∂O.

Sampling Models: Minimal Reach Sampling

- Interval $I(p) = [p_0, p_1]$ is the set of curve points between p_0 , and p_1
- Reach of a curve interval I: inf $lfs(p) : p \in I$

Sampling Models: Minimal Reach Sampling^[18]

- Consider pseudo-concavities with extremal bi-tangent points as the intervals
- Local feature size is computed w.r.t exterior medial axis
- Compute the minimum reach of _____ all the pseudo-concave intervals
- MRS: the closest neighboring point of any p in S lies at exactly

[18] Thayyil et al. 2021, "A sampling type discernment approach towards reconstruction of a point set in R²", *Computers Aided Geometric Design*

Evaluation Practices: L² error norm

• Quantitative analysis based on L² error norm^[13]

$$L^2$$
error norm = $\frac{area((O - Re) \cup (Re - O))}{area(O)}$

O: original object, Re: reconstructed polygon

• L² error norm of zero □ both the areas are equal, and the boundaries are structurally alike.

Evaluation Practices: Feature based Comparisons

• Typical features: simple closed curve, multiple components, holes, outliers, sharp corners

Evaluation Practices: Point Set Density

Image Courtesy: [18]

Evaluation Practices: Point Distributions

- DBDI: dense boundary and interior
- DBSI: sparse interior, dense bound
- SBDI: sparse boundary, dense int.
- SBSI: sparse boundary & interior
- Other options: truly random, semi-random etc.
- Not robust to noise/outliers

Image Courtesy: [18]

Chi Shape Software [13]

Non-convex Hull test Program

http://duckham.org/matt/characteristics-shapes/

Other Software

- Alpha shape in CGAL Library
- C++ and CGAL predicates

Sl. No	Algorithm	URL
1	CT-shape	https://github.com/agcl-mr/Reconstruction-CTShape
2	Petal ratio	https://github.com/agcl-mr/Reconstruction-Discern
3	Shape-hull graph	https://github.com/jijup/Shapehull2D
4	EC-shape	https://github.com/ShyamsTree/HoleDetection

Future Directions

- Improving and simplifying sampling conditions, especially for non-smooth and self-intersecting curves, and region reconstruction
- Reconstructing curves from hand drawn sketches with varying stroke thickness and intensity
- Deep learning on curves and shapes (similar to 2D medial axis)
- Reconstruct parametric curves instead of piece-wise polygonal curves
- Reconstruction of surfaces from networks of 3D curves
- Kinetic shapes: Shapes of moving points?

Acknowledgements/Collaborations

Collaborators:

- Prof. Ramanathan Muthuganapathy
- •Prof. Tamal Dey
- •Dr. Stefan Ohrhallinger
- •Dr. Amal Dev Parakkat
- •Dr. Subhasree Methirumangalath
- •Dr. Safeer Babu Thayyil

Acknowledgements:

- •Prof. Edelsbrunner
- •Prof. Nina Amenta
- •Prof. Antony Galton
- •Prof. Matt Duckham
- •Prof. Mahmoud Melkemi and all other authors of various papers discussed in this tutorial

Thank you!!! Questions?