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Abstract

Given an unorganized two-dimensional point cloud, we address the problem of efficiently constructing a single aesthetically pleas-
ing closed interpolating shape, without requiring dense or uniform spacing. Using Gestalt’s laws of proximity, closure and good
continuity as guidance for visual aesthetics, we require that our constructed shape be minimal perimeter, non-self intersecting and
manifold. We find that this yields visually pleasing results. Our algorithm is distinct from earlier shape reconstruction approaches,
in that it exploits the overlap between the desired shape and a related minimal graph, the Euclidean Minimum Spanning Tree
(EMS T ). Our algorithm segments the EMS T to retain as much of it as required and then locally partitions and solves the problem
efficiently. Comparison with some of the best currently known solutions shows that our algorithm yields better results.
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Figure 1: a) A sparsely sampled unorganized point set. b) Its closed manifold
interpolating boundary with minimum perimeter.

1. Introduction

The goal is to identify a single aesthetically pleasing shape
connecting points in a 2D unorganized point set, without re-
quiring dense or uniform spacing. To fulfil the aesthetic re-
quirement, we use for guidance Gestalt’s laws of proximity (hu-
man tendency to connect close dots), closure and good conti-
nuity (smoothness) [27] to obtain measurable and objective cri-
teria. Accordingly we require that the shape be a closed, non-
selfintersecting manifold (law of closure) which interpolates all
the points with minimum length (law of proximity), henceforth
denoted by S min. For the law of good continuity we will present
a further constraint below. If we exclude extreme point distri-
butions from our problem domain, the algorithm presented in
this paper provides an efficient solution (see Figure 1).

The task of 2D shape reconstruction from boundary sampled
points plays an especially important role in a number of engi-
neering fields: reverse engineering of geometric models, outline
reconstruction from feature points in medical image analysis,
etc. The closed boundary is essential for calculating various

shape moments, a characteristic property with many applica-
tions.

2. Related Work

Polygons interpolating a point set are also a topic in compu-
tational geometry, but the focus there is mostly on investigating
lower and upper bounds on the total number of interpolating
polygons based on the size of the given point set, say, as in [10].

If we consider all the methods in the literature for 2D shape
reconstruction, they can be classified according to two major
approaches which are discussed further below.

2.1. Reconstruction with a Local Sampling Condition

Early methods worked only on smooth and uniformly sam-
pled point sets, such as α-shapes [8, 16], Figueiredo and
Gomes [17], β-skeleton [24], γ-neighborhood graph [30] and
r-regular shapes [6]. For example, α-shapes requires user-
specification of a global constant which depends on sampling.
It does not work for non-uniformly sampled point sets. It also
cannot guarantee a manifold the way our algorithm does.

Amenta et al. [3] with their Crust algorithm introduced the
concept of local feature size which allows reconstruction from
non-uniformly sampled point sets. The stated sampling require-
ments of the Crust method and its successors [11, 12] are how-
ever quite restrictive in theory and difficult to ensure in practice.
Not only is it difficult to check if a given point cloud satisfies
the sampling requirement, but it is even more difficult to con-
struct a sampling satisfying the requirement. It should be noted
though that the presented algorithms often show reconstruc-
tion of less restricted point sets but with no guarantees. DIS-
CUR [31] uses the two properties of proximity and smoothness
but still requires rather dense sampling in sharp corners. Some
improvements on these aspects have been made in VICUR [28],

Preprint submitted to Computer Aided Design September 23, 2011



but it relies very much on user-tuned parameters and regresses
for other point sets. The Gathan algorithm from Dey et al. [13]
also handles sharp corners, but again without guarantees. Gath-
anG [14] is an extension which, like our work, is targeted at
closed shapes and gives guarantees exclusively for certain con-
ditions. It still does not work for many cases we tested. In spite
of this, it provides in our opinion the best solution to date for
this 2D shape reconstruction problem.

All of the above-mentioned algorithms reconstruct a bound-
ary using edges in the Delaunay Graph (DG) and results have
shown that this is a very reasonable choice. The DG has the
property of maximizing its angles and minimizing its edge
lengths, which conform to the Gestalt laws of good continuity
and proximity. A minimum boundary which is not constrained
to DG may trade in longer edges and sharper angles instead.

A fundamental advantage of our method versus using a local
criterion is that we can achieve far superior results for recon-
struction of the single closed manifold shape which we require,
for the particular subclass of point sets which represent such
a shape. Instead the output of the previous methods only par-
tially reconstructs such a shape as one or more open curves or
as a number of ambiguous shapes (Figure 13 shows a number
of such cases).

2.2. Construction as Global Minimization of a Criterion
Finding the minimum perimeter closed boundary actually re-

quires a global search of the solution space.
A first attempt on global construction presented in [20] finds

spanning Voronoi trees and selects the one with minimal length
by integer programming, with O(n2log n) complexity. It does
not work well for sharp angles and non-uniform sampling; ob-
viously it prunes good solutions too early.

Giesen shows in [19] that the exact solution to the travel-
ling salesman problem (TSP) can reconstruct the shape for suf-
ficiently dense sampling. Althaus et al. extend this work in [1]
to non-uniform sampling with some conditions, and in [2] they
compare it with both the Crust-type family of algorithms and
TSP-approximations. They note that the latter two methods
fail for certain curves with sparser sampling which the exact
TSP method handles well. They also mention that the expo-
nential complexity of the TSP decreases with denser sampling.
With the exception of [19], these methods do not require user-
specified parameters. Unfortunately, finding the exact solution
using the TSP approach takes unreasonable time O(2n) even
for small P. The concorde exact TSP solver [4] scales sub-
exponentially and can take hundreds of CPU-years for medium-
sized point sets. A detailed discussion on its complexity is
available in [23].

TSP approximations show more reasonable complexity but
are not linearithmic, i.e. O(n2.2) [22] or O(n(log n)O(c)) for a
(1 + 1/c) approximation of the optimal tour of an Euclidean
TSP [5], and O(nO(1/ε)) for (1 + ε) times the solution for a pla-
nar graph TSP [21]. More importantly, they fail to guarantee
the minimum solution and even a single wrongly connected
edge may have a significant impact on aesthetic quality of the
reconstruction. Hence approximation schemes for TSP cannot
guarantee the desired interpolating and manifold shape.

Figure 2: EMS T and S min have considerable overlap even for sparsely sampled
point sets like the tulip: a) EMS T has 78 edges. b) S min has 79 edges. c) 57 of
their edges are shared.

While we too impose the minimum perimeter requirement,
by restricting the sub-domain of that problem to edges in DG,
we exploit the relationship between the Euclidean minimum
Spanning Tree (EMS T ) and S min (constrained to DG). Our
algorithm segments the EMS T and classifies the segments so
as to retain as many of them as possible in the reconstruction
of S min. This way we partition the problem and provide an ef-
ficient solution. S min differs from EMS T only by restricting its
vertices to be manifold, which in turn increases its length (see
Figure 2).

This relationship between the minimum spanning tree and
the shape has been mentioned in Figueiredo and Gomes [17].
However, they only prove reconstruction for very densely sam-
pled point sets: an EMS T without branches. They do sug-
gest some parameter-based heuristics for more sparsely sam-
pled point sets, but do not really exploit this relationship in the
unique way we do in our algorithm. We show that our algorithm
can quickly find the desired solution and scales well to handle
very large point sets. And if we exclude extremely sparse and
highly non-uniformly sampled point sets, our algorithm’s com-
plexity is just O(n log n). While we do note that a constrained
TSP solution restricted to the planar graph DG would yield the
same result, i.e., S min, we are not aware of any TSP solution
with this performance.

2.3. Intuitive Overview of our Method

Our method starts from a Delaunay graph (DG) and the Eu-
clidean minimum spanning tree (EMS T ) of the point set (see
Figures 3a and 3b). EMS T is a subset of DG (Attene and Spag-
nuolo [7]) and can be constructed in O(n log n) (Kruskal [25]).

It can have a number of non-manifold vertices with degree
not equal to 2 (leaf or fork vertices). To such vertices we ap-
ply edge exchange operations like those used in the degree-
constrained spanning tree problem [29]. Determining this set
of operations so that EMS T is transformed into S min is NP-
hard. Our main contribution in this paper is an innovative way
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Figure 3: a) Example point set P. b) DG with edges in EMS T emphasized. c) Edges incident to leaf vertices (m0, m1 and s0) shown with dotted lines. d) EMS T
with edges added and envelope of inflatable branch shaded with its edges not in EMS T shown with dotted lines. e) Envelope edges added. f) Removal of cut edges
yields S min.

of efficiently performing these edge exchange operations.
The other steps in our algorithm are the following:

• Segment the EMS T at fork vertices and retain as many
segments as possible, since such segments are already of
minimum length (Figure 3c).

• Adding an edge in DG to the EMS T graph creates a loop.
If two loops share a single edge called as cut edge, then
deleting just the cut edge results in a single loop interpo-
lating points in both loops. On the other hand if two loops
share a single vertex or an edge-chain, then removal of
these shared vertices will result in either a split graph or
vertices which are not interpolated. Hence, we only add
edges which lead to loops sharing a cut edge. The next
step is therefore to select and add the DG \ EMS T edges,
incident to leaf vertices, needed to make S min.

• The resulting graph will have the following configuration:
(i) a single loop or multiple loops connected by pairs of
loops sharing cut edges, and (ii) segments (like strands) of
EMS T connected to a loop at one end and open or con-
nected to another loop at the other end (Figure 3d).

• In the next step the strand-like segments are converted (in-
flated) into loops and then all cut edges are removed to
yield a manifold interpolating shape (Figure 3d-f).

In the following sections we present these steps in detail and
further identify the point configurations for which our algorithm
is guaranteed to work.

3. Definitions

Closed shape S is a single manifold polygon interpolating
all vi ∈ point set P and consisting of edges ei ∈ Delaunay graph
DG of P. {S i} denotes the set of all such closed shapes in P and
S min denotes the one with minimum perimeter.

Hamiltonian graph is a graph G = (V, E) with at least one
closed shape S (Dillencourt [15]). Genoud [18] shows that DG
for any P is rarely non-Hamiltonian.

Figure 4: EMS T with other edges in DG shown dotted: a) Segments labeled
as segi, leaf vertices as vl, fork vertices as v f . seg1 is a trunk segment, all other
segments are branches. b) One of two non-manifold envelope boundaries of
seg0 (shaded grey) with base edge eb. seg0 is therefore a retained segment. c)
First manifold envelope boundary of seg1 with two fork vertices and a base edge
each. seg1 is therefore a non-retained segment. d) Second manifold envelope
boundary of seg1; the other two envelope boundaries are non-manifold.

Loop is a cyclic sequence of edges.
Segment s is a sequence of manifoldly connected edges ter-

minated by non-manifold vertices (with degree , 2), either leaf
vertices vl (degree 1) or fork vertices v f (degree >2). A seg-
ment with at least one leaf vertex is called a branch b. All other
segments are trunk segments (see Figure 4 for examples).

Cut is the set of vertices of a connected graph G whose re-
moval renders G disconnected. A cut edge has two cut vertices
and a cut edge-chain has more than two.

Uniformity of sampling u = di/d j where di, d j are the Eu-
clidean distances between a point p ∈ P and its neighbors in
S min, sorted such that di > d j. umax is then the largest u for any
p ∈ P. The larger umax is, the less uniform is P.

Sharp angled features: In [3] the notion of Local Feature
Size was introduced, primarily for smooth shapes (no sharp cor-
ners), which depends on local curvature and proximity. They
state: For an r-sampled curve in the plane, r < 1, the angle
spanned by three adjacent samples is at least π − 4arcsin(r/2).
This condition does not evaluate for r >= 1, therefore it can-
not support angles <= 60◦. Since our method can handle much
sharper angles, we use instead αmin, the minimum angle be-
tween any three adjacent points in the desired closed shape as a
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measure of sharp features.

4. Defining Operations

4.1. Segment Classification

We classify EMS T segments into those which are part of
S min and those which are not. This classification is based on the
observation that for retained segments, any other edge sequence
connecting the segment’s interior vertices (all except the end
vertices) will either result in an increase in length or will not be
manifold.

Base edge eb for a segment s is defined as follows. Let the
edge ei ∈ s be incident to a fork vertex v f ∈ s. Then two
base edges eb are the immediately adjacent edges in cw and
ccw sense, incident to v f . It may be noted that a trunk segment
has four base edges, a branch with one leaf vertex has two and
a branch with both ends as leaf vertices has none. The vertex of
eb opposite to v f is called a base vertex vb.

Envelope env(s) for a segment s is the set of Delaunay tri-
angles for which the vertices consist of the vertex set ∈ s and
one base vertex per fork vertex. The envelope boundary may or
may not be manifold. A branch has two envelopes and a trunk
has four.

Retained segment is a segment for which none of its envelope
boundaries is manifold. For such segments, there is no alterna-
tive way of manifoldly interpolating the segment vertices with-
out increasing their length. All other segments are non-retained
(see Figure 4 for both cases).

4.2. Inflate and Select Minimum Loop Operation

A non-retained segment for which a manifold envelope
boundary exists is a strand which may require to be modified to
become part of the desired closed shape. A manifold envelope
boundary can always be modified to form a loop which inter-
polates all the vertices in that segment. There may be a number
of different choices for forming these interpolating loops. We
select the minimum length one. We call this as the inflate oper-
ation associated with the segment. Since all loops of a segment
share its base edges with the remainder of S i, this operation
corresponds to solving the reconstruction problem locally, i.e.,
segment-wise.

4.3. Edge Displacement Operations

S min for a point set with n points has n edges, while its EMS T
has one edge less since it is a tree.

Let E+ = S min \ EMS T denote the set of edges that we need
to add to EMS T when transforming it into S min. Note that the
same number of edges minus 1 must be removed from EMS T
to maintain the edge count.

A subset of potential edges in E+ is easily identifiable. In this
subset edges are incident to leaf vertices. Each of them forms
a loop when added to EMS T . We classify the operations of
adding edges into two types of edge displacement operations
(see Figure 5 for examples):

Figure 5: a) Example of EMS T with moves: m0(v0, v1) and m1(v4, v5) both
associated with the trunk segment e−(v2, v3). b). Another example of EMS T
with move and snaps: s0(v1, v0) with e−(v1, v2) has two leaf vertices, s1(v3, v1)
with e−(v3, v4) and s2(v6, v7) with e−(v6, v5). For s0: v− = v0, v= = v1, v+ = v2.

• move edge e+: between two leaf vertices. For satisfying
the manifold condition, there has to exist a corresponding
edge e− ∈ EMS T incident to a fork vertex in the move’s
loop. We say that e− moves to e+ since the two edges do
not share any vertices. Let us recall that EMS T has one
edge less than S min. Therefore there will exist one move
without e−.

• snap edge e+: incident to a leaf vertex v−. Its other vertex
v= can be a leaf or a manifold vertex. e−(v=, v+) is the edge
incident to a fork vertex v+ in the snap’s loop. We say that
e− snaps from v+ about v= to v−, to become e+.

We want to underline that only a subset of the move and snap
operations identified this way will actually need to be applied.
Therefore we will use the term candidate for them in the context
where they are just potential operations, as opposed to when
they have been definitely applied as operations.

The e− edge of a snap candidate can be locally identified.
The e− edge of a move could be anywhere in its loop, and in
principle entails a global search. However, as mentioned ear-
lier, we ingeniously avoid this global search, by clustering to-
gether all the add edge operations (e+) and then removing all
the corresponding e− edges at once, as they are all identifiable
as cut edges.

4.4. Associations of Candidates to Segments

In order to decide which of the candidate edges should be
added to make S min, we create a segment - candidate association
table and then evaluate the candidate’s applicability based on
three conditions, interpolation, manifold and minimum length.
This table enables the evaluation of all potential solutions. One
column indicates the type (retained/non-retained) and another
distinct column lists all the candidates associated with each seg-
ment in EMS T .

Every segment entirely contained in the loop created by the
addition of a candidate edge is said to be associated with it
and vice versa. The only exception is the segment containing
edge e− in the loop formed by a snap edge e+, since this e− is
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Figure 6: a) Single-edge trunk segment seg0 can be contained in the loops of
two candidates m0, m1 since it forms a cut edge. b) Candidates m2, m3 can not
both be permitted to be applied for multiple-edge trunk segment seg0: since its
removal will disconnect v0.

Figure 7: a) EMS T of a point set with DG edges shaded grey and segments and
candidates marked. b) manifold envelope of seg0 shaded. c) manifold envelope
of seg2 shaded.

removed in a subsequent step. Let us note that this segment-
candidate association is many-to-many, see for example Fig-
ure 6b, in which seg0 is contained in the loops of two move
candidates m0 and m1. Of course, we can only apply one of
them while respecting the condition of a manifold boundary.

4.5. The Solution Space Tree

A set of candidates associated with a segment is said to be
multi-choice if not all of them can be applied simultaneously.
Table 1 shows this for the example point set shown in Figure 7.
In this example, trunk #0 and branch #2 are the multi-choice
segments. Using such a table, we can explore all potential so-
lutions by viewing the solution space as a tree. Each candidate
associated with a multi-choice segment represents a branching
point. Each terminal node contains a potential solution with a
permissible subset of candidates per segment. The size of the
solution space tree is the product of its multi-choice candidate
set sizes. So this example contains 3∗2 = 6 potential solutions.

4.6. Pruning of the Solution Space Tree

It is easy to see that the solution space tree can grow quickly.
For efficient searching, our algorithm prunes parts of this tree
as early as possible by eliminating any candidates leading to
a non-manifold solution. In fact it dynamically constructs the
solution tree, doing the branching required for exploring new
solutions only where it is unavoidable. If a candidate is the
only one associated with a segment, then it is applied. This in
turn could lead to reducing the number of candidates in other

Segment Segment type Candidate Ops
trunk #0 non-retained m4 m5 in f late
branch #1 retained m4
branch #2 non-retained m4 in f late
branch #3 retained m5
branch #4 retained m5

Table 1: Segment-candidate table for point set of Figure 7.

multi-choice segments, which may result in more such single
candidates. Thus evaluation of multiple solutions is only nec-
essary when we are left with nothing but multi-choice segments
in the table.

We shall see in the examples later that even in problems with
very large solution spaces, this procedure of eliminating can-
didates is very effective and typically results in construction of
only a small part of the solution tree. This is what makes this al-
gorithm efficient. More details of the algorithm follow, giving
all the states when candidates can be applied, eliminated and
when multiple solutions have to be evaluated.

5. Algorithm

1. For a given point set P, create DG and EMS T , segment
EMS T and classify segments as retained or non-retained.

2. Identify candidate operations and create segment-
candidate association table.

3. Initialize Ecurr = EMS T .
4. Apply an applicable move or snap candidate from the

segment-candidate association table. A candidate is
not applicable if it results in a non-manifold condition,
namely, a cut vertex, a cut edge-chain or its e− causes a
loop to become open.

5. Prune the segment-candidate association table by eliminat-
ing all associations of invalidated candidates as follows.
As a result of the previous add edge operation, some seg-
ments will already be part of a loop; their associated candi-
dates are no longer needed and are removed from the table.
Some of the leaf vertices will become manifold; candi-
dates incident on such vertices are also removed from the
table. Lastly, any candidate which if applied will lead to a
non-manifold boundary is also removed.

6. Repeat steps 5 and 6 (Apply and Prune) until there are no
more move or snap operations left.

7. Carry out inflate operations remaining in the table.
8. Remove cut edges in Ecurr

The above are the major steps in our algorithm. In the im-
plementation there is detailed case analysis based on the type
of operation move or snap for detecting the non-manifold con-
dition.

Once the association table contains only multi-choice seg-
ments, we select the segment with least number of candidates,
and explore all the solutions. The order in which candidates are
applied (and thus the order in which the solution space is tra-
versed) does not matter. This is because our algorithm evaluates
all potential solutions.
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Figure 8: A manifold envelope boundary env0 (shown using solid lines) with
two interior vertices: a) shows triangles t0, t2 and t3 for removal from env0. b)
env1 = env0 \ t2: new removal triangles are t0, t1 and t3. c) env2 = env0 \{t2, t1}:
one potential local loop since no interior vertices remain. d) Final minimum
length local loop for the example: env3 = env0 \ {t0, t2}

5.1. Inflate Operation

As already mentioned, we will need to apply the inflate op-
eration to all the connected sets of remaining segments (inflat-
able sub-trees) which do not form part of any loop. This is
described next. Triangles with a single edge on the envelope’s
boundary and one vertex in the interior are placed in a list and
removed until no interior vertices are left. This will yield a loop
interpolating all the vertices in the segment. The loop causing
minimum increase in perimeter of S min is chosen (see Figure 8).

5.2. Remove Cut Edges

After all the inflate operations are carried out, there are no
more operations in the segment-candidate association table to
apply. Ecurr will have a number of loops connected to each other
through cut edges, which have to be detected and deleted to
yield an interpolating manifold boundary. A generic algorithm
to detect cut edges in a graph is of higher than linear (worst
case) complexity. But we can do this with linear time worst
case complexity by exploiting the knowledge we have about
the applied candidates as follows:

We know that the cut edges of snaps are their e− and the ones
of the inflates are inside their chosen modified envelope. The
remaining cut edges are associated with moves. These are not
known but do not overlap among each other.

Therefore we just have to first remove all cut edges resulting
from application of snaps and inflates and then remove all edges
between vertices of degree > 2.

5.3. Examples with multi-choice segments

The segment-candidate shown in Table 2 for our first ex-
ample (a figure-eight), has all multi-choice segments, except
branch #2 (Figure 9. The Apply-Prune steps leading to the so-
lution are also shown.

Let us briefly follow the progress of our algorithm for this
example. m2, the only operation associated with branch #2 is
first applied. Consequently s1, m3 and s6 get eliminated. m5,
the only operation associated with branch #4 is applied next.
All remaining operations get eliminated, resulting in the desired
shape.

Figure 9: a) EMS T with segments (blue: non-retained, green: retained) and
candidates (red) marked. b) Applying m2 creates a loop in the lower half and
leaves only one candidate m5. c) Applying m5 and removing the cut edge yields
a single S i, which is the desired solution.

Segment Type Candidate Ops m2 applied m5 applied
trunk #0 non-retained s1 s6 m2 m3 m5 in f late m2 m5 in f late m2 m5
branch #1 retained s1, m2, m3 m2 m2
branch #2 retained m2 ← m2 m2
branch #3 non-retained m3 m5 in f late m5 in f late m5
branch #4 retained s6 m5 m5 ← m5

Table 2: Progression in segment-candidate table (right-most column is solu-
tion). Candidate to apply next is marked by arrow.

Figure 10: a) EMS T for point set from [31] with segments marked: green = re-
tained, blue = non-retained. The multiple choice of candidates at seg1 creates
three potential solutions PS i: b) PS 0 applies m1: in the end seg6 remains with-
out candidates therefore PS 0 becomes invalid. c) PS 1 applies m7 and produces
S 0. d) PS 2 applies m8 and produces S 1 which is S min.
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Segment Type Candidate Ops
trunk #0 non-retained m0 m1 s4 loop
trunk #1 retained m1 m7 m8
branch #2 non-retained m0 m1 s2
branch #3 non-retained s2 s3 s4
branch #4 non-retained m6 m7 loop
branch #5 non-retained m1 m6 m8 s9
branch #6 retained m0 m7 m8

Table 3: Initial segment-candidate table.

Figure 11: a) EMS T of non-conforming point set, with single operation m0.
b) Result is S 0 which is not minimal. c) S min. d) Therefore m1 and s0 are the
correct operations to obtain S min as their vertex degree changes cancel out at v0
but they are not detectable.

5.4. Examples with several potential solutions

For the point set shown in Figure 10 all are multi-choice seg-
ments (see Table 3). The complete solution tree would have
4 ∗ 3 ∗ 3 ∗ 3 ∗ 3 ∗ 4 ∗ 3 = 3888 terminal nodes (potential so-
lutions). However, using our algorithm, very large parts of this
solution tree get pruned and only a small number of potential
solutions have to be actually evaluated to get S min.

The algorithm chooses the first segment with the minimum
number of (all applicable) associated candidates: seg1. It
branches into three potential solutions as shown in Figure 10.
All other parts of the solution tree get pruned, so no further so-
lutions need to be explored. Thus the total size of the search
remains at 3.

5.5. Conforming Point Set Configurations

Like most other algorithms, dense, uniformly sampled point
sets are rather easily handled by our algorithm; this is also evi-
dent from the proof given in [17]. For such dense point config-
urations, the EMS T already shares most edges with the desired
boundary and the solution space tree remains small. As exam-
ple we show a fairly large point set derived from a silhouette
in Figure 12e. Noisy data is also interpolated as long as shape
features are not significantly affected. If the noise is such that
the point spacing gets unreasonably non-uniform, then the al-
gorithm will terminate with an incomplete or incorrect result.
For such noisy data an approximation algorithm like the one
presented in [26] should be preferred. If one looks closely at
the statistics in Table 4, those point sets which are densely sam-
pled (Figure 12e) are relatively less complex to reconstruct than
sparsely sampled sets.

Below we shall define the class of point configurations for
which our algorithm can guarantee a minimum length boundary
shape and give the proof for this. In a subsequent section we
derive the computational complexity of our algorithm.

Our algorithm can guarantee the result for point set config-
urations in which edges in all required moves and snaps op-
erations are connected to leaf vertices in EMS T . Hence our

algorithm requires that the input point set satisfy the following
condition:

move and snap operations must not overlap such that a e+ and
a e− are incident to the same vertex. While such an overlap does
not violate the manifold condition, the operations themselves
are individually non-detectable (see an example in Figure 11).

We denote point sets satisfying the above condition as the
conforming class.

Theorem 1. Our algorithm always terminates for point sets in
the conforming class and produces their S min.

Proof 1. All edges in retained segments of EMS T, excepting
the edges at each end, are guaranteed to be in S min. Since
the vertices of these edges are manifold, they do not permit
any add edge operation without creating a non-manifold re-
sult. This proves that these edges do belong to S min. For inflat-
able segments all interpolating loops through their vertices are
evaluated and the minimal one selected. Finally, by the above
condition, all remaining edge exchange combinations are de-
tected and evaluated, and the combination yielding the mani-
fold closed shape with minimal length is chosen.

In our experience the conforming class includes most sam-
pled point sets encountered in practice, as they are usually dense
and uniform. It also includes point configurations that are con-
siderably more non-uniform and sparse. Further, in practice, for
many point sets outside the conforming class, the algorithm will
terminate and produce an interpolating shape, which is also aes-
thetic. However the above guarantee does not apply. We sug-
gest later an extension to the algorithm to include an expanded
class of point sets. With this extension, except in places where
points are highly non-uniformly spaced or extremely sparse,
our algorithm will reconstruct an aesthetically pleasing shape.

6. Results

Point set n l m i Comb. sg sl αmin umax

Tulip 79 15 18 2 > 1014 1 12 20◦ 4.2
Goose 74 14 10 1 > 108 1 4 61◦ 3.6
Octopus 166 37 20 3 > 1035 4 40 72◦ 2.7
Crocodile 129 8 7 1 46080 2 5 34◦ 2.5
Elephant 75 15 9 0 > 1014 5 2 13◦ 5.5
Inverted heart 34 5 6 0 3888 3 1 19◦ 3.3
Close curves 13 4 10 2 128 3 25 49◦ 2.1
Random10 10 4 0 0 270 3 1 40◦ 6.6
Three loops 18 5 8 0 540 1 1 76◦ 2.0
Rail joint 30 3 10 1 9 2 3 122◦ 16.5
Family 9990 33 5 1 > 1014 16 2 45◦ 1.4

Table 4: Complexity table: n=points, l=leaf vertices, m=vertices in largest in-
flatable sub-tree, i=largest number of interior vertices in such a sub-tree. Com-
binations gives the number of the terminal nodes (solutions) in the hypothetical
complete solution tree. sg is the number of solutions evaluated globally. sl is
the maximum number of solutions evaluated locally for any inflatable sub-tree.
αmin is the minimum angle. umax is the largest local non-uniformity factor.

We have implemented this algorithm and tested it with a very
large number of sample point data sets. Specifically, we have
tested the performance of our algorithm on many of what are
considered as problematic point sets, point data for which the
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Figure 12: Columns: 1) Point set. 2) Our reconstruction. 3) GathanG with default parameters minAngle = 10 and maxIter = 4. 4) DIS CUR. Rows: a) Goose
(Amenta et al. [3]). b) Octopus: Close curves with sparse sampling. c) Crocodile: Sharp features. d) Elephant: non-uniform sampling and very sparsely sampled at
corners. e) 10k points sampled on silhouette image: only our method produces a manifold. f) Detail of e.

8



Figure 13: Columns: 1) Point set. 2) Our reconstruction. 3) GathanG with default parameters minAngle = 10 and maxIter = 4. 4) DIS CUR. Rows: a) Tulip
(Althaus and Mehlhorn [1]). b) Rail-joint (engineering part). c) Inverted heart (Zeng et al. [31]). d) Close curves. e) 10 random points. f) Three loops.
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currently best known algorithms fail to produce desirable re-
sults. We focus on critical details as typical point sets are likely
dense and thus not useful to properly illustrate the advantages
of using our method. We compare our results with the previ-
ous best reconstruction method, GathanG from [14] (see Fig-
ure 12 and Figure 13) and also with DIS CUR [31]. The lat-
ter have already compared their results with many of the other
methods mentioned earlier. We have also compared with other
approaches such as α-shapes or greedy algorithms (i.e. Bois-
sonnat’s sculpturing technique applied to 2D [9]), but we find
that these methods settle rather too quickly into local minima
and yield poor results for the non-uniform and sparsely sam-
pled cases that we are illustrating in our comparative studies.

In our figures we have excluded the normal well sampled
cases for which most methods including ours yield good re-
sults. We have mainly included point sets which sampling-
oriented reconstruction algorithms have not been able to han-
dle correctly and efficiently. This is clear from the examples.
Further the results demonstrate that closely spaced shape seg-
ments, sharp corners, non-uniform and non-dense sampling are
all handled very well by our algorithm. What is a bit surprising
to us is the fact that the image silhouette data which is actually
dense and uniform in most places could not be handled cor-
rectly by the other algorithms. Since we only had access to the
executables of other algorithms, we can only show their results
using screen shots of the output. Hence problems in connectiv-
ity are not always visible for highly dense point sets. We have
noted that the total run times for all the algorithms are domi-
nated by Delaunay graph computation time, and hence are all
nearly the same. We do not feel that other comparisons such
as actual run-times are illustrative. For example, for DIS CUR
only their binary is available to us. It strictly works with integer
coordinates and the implementation is probably not optimized
as it becomes very slow even for medium-sized point sets.

It could be argued that our requirement of a single closed
shape (guided by the Gestalt law of closure) limits our algo-
rithm’s applicability. Where as Crust, Gathan, DIS CUR and
others are not. And even GathanG, although it is mainly tar-
geted towards closed curves, handles open curves as well. How-
ever, the closed or open result from these algorithms has to be
user specified or based on requiring the point configuration to
satisfy a specified geometric condition, such as limit on point
separation distance, abrupt curvature change, etc. In our algo-
rithm, we could always apply the same conditions in a post-
processing operation to remove offending edges and yield an
open curve.

Also, if it is known that an open curve is to be generated,
Steiner points can be appropriately introduced as user input, al-
though deciding on the location for these Steiner points puts an
additional burden on the user. On the other hand, it is important
to restate that the imposition of Gestalt’s law of closure lets our
method realize far better results for sparsely sampled point sets.

Actually, we conjecture that our requirement of closed shape,
restriction to edges in DG, classification and retention of re-
tained segments and imposition of the manifold condition are
what helps us significantly prune the solution space which oth-
erwise has to be explored in full by TSP algorithms.

6.1. Complexity

As can be seen in the results section above, actual run time
is nowhere near the worst case. However for theoretical com-
pleteness, we derive the worst case performance of this algo-
rithm. The worst case is of course for data sets which have
completely random distribution of points in 2D space. We first
provide definitions of a few parameters needed in the complex-
ity formulation.

• Global solutions sg: denotes the number of calls to apply
and eliminate procedure (see start of Section 5).

• Local solutions sl: denotes the maximal number of solu-
tions evaluated in any call to inflate and select minimum
loop procedure (see Section 5.1).

Based on a point set with n vertices with l of them being leaf
vertices, S min can be reconstructed in:

O(max(sg(nlogn), sl)) (1)

Below we derive the worst case complexity for the individual
steps in the algorithm:

• Create DG, EMS T , segment and classify: O(n log n).

• Create segment-candidate association table: In the worst
case O(nl) for the traversal of all n edges of the tree for
at most dl candidates (d = 6 is the average of incident
edges for a vertex in DG). In practice for non-randomly
distributed point sets the complexity is lower.

• apply and prune: O(n log n). It can be called O(cr) times,
where c are the columns and r the rows of the segment-
candidate table.

• inflate and select minimum loop: O((m log m)i!), where i
is the maximum number of interior vertices in an inflatable
segment.

• remove cut edges: O(n).

Table 4 shows the actual values of these parameters for the
various point sets used in Figures 12 and 13.

As can be derived from the global complexity equation
above, run-time increase is linearithmic with the number of
points, provided that the global factor sg is small w.r.t. n and
local sl is small w.r.t. nlogn. This is the case for all figures in Ta-
ble 4, even for ones which are large, sparse and non-uniform at
the same time. These factors become large only when the point
set configuration is extreme in sparseness or non-uniformity of
point spacing.

7. Conclusion and Future Work

We have presented a powerful and efficient algorithm which
is capable of reconstructing aesthetically pleasing single closed
interpolating 2D shape for an unorganised point set without re-
quiring highly dense or uniform sampling. The results are better
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Figure 14: a) The non-conforming mushroom point set (Dey and Wenger [13]).
b) EMS T with segments (blue: non-retained, green: retained) marked. The
two snaps s0, s1 share an impact at v1 but their e+ are not contained in one
segment, contrary to the required condition. c) The consequence is incomplete
reconstruction at those snaps’ affected segments: the two retained segments
seg0, seg1 remain without candidates. We can extend our algorithm to consider
the envelope of their combined point set, including the base edges eb, shaded
grey, and then carry out the inflate operation to yield the desired shape. d) S min.

than those of all other known solutions for this 2D reconstruc-
tion problem. The actual run-time complexity statistics demon-
strate that it is linearithmic for most practical cases.

Our algorithm does not employ any user-specified parame-
ters and it does not require a sampling criterion. It does have
a limitation for the point configuration which is mainly a safe-
guard to avoid very badly spaced points.

We also note that the number of leaf vertices in the EMS T
of a point set correlates well with the running time required for
the reconstruction of its S min.

For another class of point sets which fall in the non-
conforming category as they fail our required condition, i.e. as
in the case seen in Figure 14 we show a potential extension.

Further, we believe that the primary methodology of starting
with a skeleton shape and then transforming it into the final
interpolating shape can be extended to 3D. We are presently
making progress on the formulation of such an extension for
3D shape reconstruction, a much more difficult problem.
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