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Figure 1: Images rendered with PSSMLT in 15 minutes with pl = 0.75 (image above) and pl = 0.25 (below).

Abstract
Sophisticated global illumination algorithms usually have several control parameters that need to be set appropri-
ately in order to obtain high performance and accuracy. Unfortunately, the optimal values of these parameters are
scene dependent, thus their setting is a cumbersome process that requires significant care and is usually based on
trial and error. To address this problem, this paper presents a method to automatically control the large step prob-
ability parameter of Primary Sample Space Metropolis Light Transport (PSSMLT). The method does not require
extra computation time or pre-processing, and runs in parallel with the initial phase of the rendering method.
During this phase, it gathers statistics from the process and computes the parameters for the remaining part of the
sample generation. We show that the theoretically proposed values are close to the manually found optimum for
several complex scenes.

1. Introduction

The performance of global illumination rendering algo-
rithms [Szirm08] has been dramatically increased recently,
thus these methods have become viable alternatives in
production rendering and also in real-time applications
[RDGK12]. However, high performance rendering algo-
rithms often come with many control parameters that need to
be set by the artist before starting the rendering process. Un-
fortunately, the optimal values of the control parameters are
scene dependent and a careless setting would significantly
slow down the convergence or could even result in images
of severe artifacts in case of biased methods. In practice, pa-
rameter setting is based on previous experience and a trial
and error approach, but this is unacceptable in production
rendering where a large number of images are rendered, and
also in virtual reality systems when the scene may change in
time in a way that is not anticipated by the designer. In these
cases robust rendering algorithms are needed that require no
manual parameter setting and can deliver high quality im-

ages in rendering times comparable to manually controlled
methods.

Metropolis Light Transport (MLT) [VG97] is known to
be a robust approach that can efficiently handle a large vari-
ety of lighting effects and scenes. The power of MLT comes
from the Metropolis-Hasting sampling that — unlike other
importance sampling methods generating samples indepen-
dently from a prescribed density — explores important light
path regions in the scene by mutating previous light paths
and evaluating the importance of the mutations. When a par-
ticular MLT algorithm is designed, we have to specify the
tentative transition function that mutates a path, taking into
account the following criteria:

• The mutation strategy should guarantee that the Markov
chain is ergodic, i.e. it has an asymptotic distribution
that is independent of the initial state. To satisfy this re-
quirement, all light paths of non-zero contribution should
be given a chance to be generated as a tentative sample
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sooner or later. By giving chance to the full re-generation
of a path, the ergodicity condition can be met.

• Unlike other Monte Carlo algorithms, the Metropolis al-
gorithm generates not statistically independent, but cor-
related samples, which can increase the error [SKDP99,
APSS01]. Thus, a secondary requirement for mutation
strategies is to keep the correlation low, which means that
the possibility of rejected samples should be reduced.

• Metropolis sampling converges to the desired probabil-
ity distribution, but at the beginning of the process the
samples are not selected with the required probability,
which introduces some error in the estimation. This error
is called as the start-up bias [SKDP99].

The large search space of control parameters is effectively
limited and the reduction of rejection rate is also successfully
addressed by the method of Primary Sample Space MLT
(PSSMLT) [KSKAC02], which executes the perturbations in
the space of uniformly distributed random numbers, called
the primary sample space. PSSMLT is based on the recog-
nition that any light path generator algorithm is a mapping
between the primary sample space and the path space, and if
importance sampling is involved in the path generation then
more important regions are represented by larger volume in
primary sample space. Thus, making uniform mutations in
primary sample space automatically reduces the path per-
turbation size at important regions and increases it in unim-
portant regions. We can also say that the involved impor-
tance sampling in path generation does one part of the job
of optimal importance sampling, which is further improved
by the Metropolis-Hasting scheme. In this sense PSSMLT
is a special type of random number generator that can be
plugged into an arbitrary Monte Carlo method. In PSSMLT
a simple way of ensuring ergodicity is to generate a primary
space sample point from scratch, independently of the cur-
rent paths with some positive probability. Such independent
samples are often called large steps.

Theoretically, any positive large step probability makes
the Markov process ergodic, but its selection affects con-
vergence and thus rendering performance, thus it must be
carefully set. This paper addresses this issue and proposes
an adaptive method to control the large step probability. The
model must be based on parameters that are easy to estimate
while starting the algorithm.

2. The proposed mutation control method

If the path building strategy is efficient for the particular
scene, the importance sampling is close to optimal, which
means that the path contribution divided by the density is
close to constant where it is non-zero. Note that zero contri-
bution regions keep their zero contribution, so the path build-
ing strategy can only flatten the contribution of non-zero re-
gions. Metropolis sampling should handle the residual vari-
ation of the integrand after transforming the domain accord-
ing to the path building strategy. If the non-zero contribution

regions have low variation in the primary sample space, the
efficiency of Metropolis depends on how quickly it explores
this space. However, if there is a significant residual vari-
ation after transformation, Metropolis should still focus on
the high contribution regions, according to the principles of
importance sampling. Thus, in the first case the efficiency
can be characterized by the size of the explored domain, but
in the second case, the integrand values should also be taken
into account.

The efficiency of the Metropolis method in obtaining sam-
ples that are different from the previous ones can be charac-
terized by the following three measures:

• Small step efficiency ηs that is the average probability that
a small perturbation is accepted.

• Large step efficiency ηl that is the average probability that
a large perturbation is accepted.

• The large step non-zero tentative sample probability η0 is
the average probability that a large perturbation proposes
a non-zero contribution sample. As large steps are inde-
pendent and the primary sample space has unit size, this
probability is the volume of the path domain where paths
have non-zero contribution.

Note that these parameters can be easily estimated in parallel
to the running of the algorithm and can be obtained from a
relatively few number of samples.

These values are not independent of each other when mea-
sured on a particular scene. As Metropolis sampling drives
samples towards high importance regions where small mu-
tations may cause smaller importance decrease, the relation
ηs ≥ ηl generally holds. On the other hand, the rejection of
a large mutation can be due to a mutation to a zero contribu-
tion point or to a point having positive but smaller contribu-
tion than the current state, thus ηl ≤ η0.

The ratio ηl/η0 characterizes the efficiency of the impor-
tance sampling of the path building strategy. If the integrand
is flat in the nonzero contribution regions, then this ratio is
close to 1. If it is not close to one, the integrand still has
a significant variation which needs to be compensated by
Metropolis sampling.

To explore the path space efficiently, both small and large
perturbations must be applied to the path space walk. Small
mutations propose new primary sample points that are in a
neighborhood around the point defining the current state.
Large mutations lead to an arbitrary point of the unit vol-
ume primary sample space. The type for the next mutation is
given by the large step probability pl . In the stationary case,
all positive large step probabilities are equivalent. However,
the convergence rate is affected, so, in order to find an op-
timal large step probability, the dynamic behavior of the
Metropolis algorithm should be examined.
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2.1. Flattened integrand

First we assume that the path building strategy was good
in importance sampling, thus the non-zero contribution re-
gions of the primary sample space have a roughly constant
integrand. The convergence is fast if the Markov process ex-
plores the integration domain as quickly as possible. Ran-
dom walks can be decomposed into local explorations when
only accepted small mutations modify the sample locations.
A local exploration phase is terminated when a large step is
accepted, and the system starts exploring another part of the
integration domain from the seed given by the large step.

The average probability that Metropolis sampling takes an
accepted large step is then the product of the large step prob-
ability and its success ratio, i.e. plηl . As the number of tried
mutations before an accepted large step follows a geometric
distribution, the expected length of local exploration is

E[Nlocal ] = 1+
1− plηl

plηl

where 1 is the large step that gets the process to start this
local exploration and 1− plηl is the probability that the next
sample will also belong to this local exploration.

During a local exploration, rejected mutations keep the
original state while accepted small mutations modify the
sample position additively, i.e. the new sample will be in
the small neighborhood of the previous sample, where their
difference is governed by the probability density of small
mutations. As small mutations are independent, the variance
of the perturbations caused by accepted small mutations is
added, thus the average radius d of the space explored by Nas
accepted small mutations grows proportional to the square
root of the number of new samples. However, we cannot say
that only small mutations can explore the full space. The first
step of the local exploration, which is an accepted large step,
also places a sample. As the perturbation of small steps is set
to give the possibility to walk the whole space when the to-
tal number of mutations are executed, we can safely assume
that the large step starting the local exploration is respon-
sible for the same exploration. Thus, the space visited by a
local exploration phase has expected radius

E[d] = σ
√

Nas +1

where σ is the standard deviation of a single small mutation.

In a local exploration not all Nlocal steps belong to the
category of new samples, only those mutations should count
that lead to accepted small mutations:

E[Nas] =
1− plηl

plηl
· (1− pl)ηs

1− plηl
=

(1− pl)ηs

plηl

since (1 − pl)ηs is the probability that a successful small
mutation is tried, and 1 − plηl is the probability that this
sample does not terminate the local exploration. If we gen-
erate M Metropolis samples, in average Mplηl local explo-
rations are established, each spreading over a subspace of ra-
dius σ

√
Nas +1, thus the size D of the total explored space,

having projected onto a line is

E[D] = Mplηlσ

√
1+

(1− pl)ηs

plηl
.

The objective of large step probability selection is to maxi-
mize the size of the space explored by M samples, thus we
obtain:

pl = argmax
pl

E[D] =
ηs

2(ηs −ηl)
.

If large steps are almost as successful as small mutations,
this formula can result in values that are larger than 1. This
means that the large step probability should be set to 1, i.e.
only large steps should be executed.

2.2. High variation integrand in the non-zero
contribution regions of the primary sample space

So far, we assumed that the path building strategy already
flattens the integrand transformed to primary sample space
in the non-zero contribution regions, and thus the efficiency
can be characterized by the speed of space exploration. How-
ever, when the transformed integrand still has large variation,
Metropolis sampling should still focus on the peaks of the
integrand, thus the explored size itself is not an appropriate
measure for efficiency. Unfortunately, this analysis would
also involve the consideration of the integrand, which can-
not be robustly estimated with a few samples and in parallel
with the sample generation. We can only state that in this
case, the small steps must be given higher probability since
they will concentrate regions of high contribution while they
are poorer in exploring lower contribution regions. The anal-
ysis of the previous section would propose pl = 0.5 for this
case, which is thus an overestimation. Without robust esti-
mates upon which a theoretical model can be built, we sim-
ply propose the application of pl = 0.25 in this case. The
cases of flattened and not flattened integrands can be distin-
guished by considering ηl/η0, where we set the threshold to
0.1 above which the integrand is considered as flattened.

3. Results

We have tried a variety of scenes to demonstrate robustness
of the new control method and selected bi-directional path
tracing as the path building strategy. Table 3 summarizes the
statistical parameters obtained for these scenes, the proposed
large step probability pl and the range of optimal probabili-
ties popt

l determined by an extensive parameter study.

The LuxTime scene is a typical indoors setup with mul-
tiple area light sources where only slight difficulties are
present, such as the dial of the watch which can only be
illuminated by light that passes through the glass. This
scene is lacking complex specular paths and the illumina-
tion is mainly diffuse interreflection, which is successfully
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LuxTime Spheres Chess Day Cherry Splash Cornell Box Glass Ball

Figure 2: Rendering results with three large step probabilities (high resolution images are in the supplemental material).

Scene ηl ηs η0 pl popt
l

LuxTime 0.377 0.783 0.985 0.95 (0.65-1)
Spheres 0.005 0.394 0.487 0.25 (0.2-0.3)
Chess Day 0.061 0.641 0.886 0.25 (0.2-0.4)
Cherry 0.126 0.487 0.911 0.67 (0.4-0.5)
Cornell 0.004 0.438 0.022 0.50 (0.5-0.6)
Glass Ball 0.088 0.489 0.87 0.61 (0.5-0.6)

Table 1: Scene statistics with the proposed pl values.

addressed by bi-directional path tracing, indicating by the
higher ηl/η0 ≈ 0.4 factor.

The Spheres scene includes dispersion and heavy vol-
ume scattering, where the light enters the scene follow-
ing a path through multiple thick glass-like surfaces mak-
ing it a very difficult light transport situation. Standard bi-
directional path tracing is unable to render this scene effi-
ciently, thus there is a significant residual variation of the in-
tegrand even in primary sample space, which is also shown
by the very low ηl/η0 ≈ 0.01 factor.

The Chess Day scene looks simple, but there are signif-
icant glossy interreflections that cannot be mimicked effec-
tively by the deterministic connection rays of bi-directional
path tracing. As a result ηl/η0 ≈ 0.07.

In the Cherry Splash scene we can also observe complex
specular paths, but they have significantly smaller total con-
tribution than in the Chess Day and Spheres scenes.

The Cornell Box scene is a pathological case, where illu-
mination comes in a light tube that allows the light to enter
the box only after very many specular interreflections. In this
scene, the size of the non-zero contribution primary sample
space domain is 0.022, i.e. even after emphasizing impor-
tant paths, non-zero contribution paths occupy only 2% of
the space of paths. However, within this small domain, the
integrand is relatively constant, thus ηl/η0 ≈ 0.18.

Finally, the Glass Ball scene is a typical outdoors setup
with glossy interreflections, depth of field and caustics.

4. Conclusions

In this paper we analyzed the convergence properties of
PSSMLT, and proposed a method to control its large step
probability parameter. Our method is based on a few statis-
tical parameters, including the success ratios of small per-
turbations, large perturbations, and perturbations leading to
non-zero contribution tentative samples. These parameters
can be obtained easily and robustly at the beginning of the
rendering process. We also showed that these parameters tell
us a lot about the scene and its suitability for sampling by
the given path building strategy. As Metropolis is responsi-
ble to do importance sampling on the function that is already
flattened by the path building strategy, we can build our pro-
posed large step value on these parameters.
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