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Abstract. Sophisticated global illumination algorithms usually have
several control parameters that need to be set appropriately in order to
obtain high performance and accuracy. Unfortunately, the optimal val-
ues of these parameters are scene dependent, thus their setting requires
significant care and is usually based on trial and error. This cumbersome
process is unacceptable in production rendering where robust methods
are needed that can render a larger set of images, e.g. frames of a movie,
without lengthy experimentation on the parameter setting. To address
this problem, this paper presents a method to automatically control the
large step probability parameter of Primary Sample Space Metropolis
Light Transport (PSSMLT). The method does not require extra compu-
tation time or pre-processing, and runs in parallel with the initial phase
of the rendering method. During this phase, it gathers statistics from the
process and the parameters are obtained according to these statistics for
the remaining part of sample generation. We show that the theoretically
proposed values are close to the manually found optimum for several
complex scenes.

1 Introduction

The performance of global illumination rendering algorithms [DBB03] has been
dramatically increased recently, thus these methods have become viable alterna-
tives in production rendering and also in real-time applications. The performance
increase is the result of sophisticated sampling methods, reuse of information
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gathered with other samples, and the exploitation of the graphics hardware.
However, high performance rendering algorithms often come with a larger set
of control parameters that need to be set by the artist before starting the ren-
dering process. For example, when rendering with the photon mapping method
[Jen01], the artist should set the number of caustic photons, the number of regu-
lar photons, number of final gathering rays, and the number of photon hits that
are considered to be in the same local neighborhood. Unfortunately, the opti-
mal values of the control parameters are scene dependent and a careless setting
would significantly slow down the convergence or could even result in images of
severe artifacts in case of biased methods.

In practice, parameter setting is based on previous experience and a trial and
error approach, but this is unacceptable in production rendering where a large
number of images should be rendered without visible artifacts under severe time
constraints, and also in virtual reality system when the scene may change in time
in a way that is not anticipated by the designer. In these cases robust rendering
algorithms are needed that require no manual parameter setting and can de-
liver high quality images in rendering times comparable to manually controlled
methods.

Metropolis Light Transport (MLT) [VG97] is known to be a robust approach
that can efficiently handle a large variety of lighting effects and scenes. The power
of MLT comes from the Metropolis-Hastings sampling that — unlike other im-
portance sampling methods generating samples independently from a prescribed
density — explores important light path regions in the scene by mutating pre-
vious light paths and evaluating the importance of the mutations. Metropolis
sampling establishes a Markov chain on the space of light paths, and by following
an almost arbitrarily selected mutation strategy and a carefully defined rejec-
tion scheme based on an importance function, it promises that the asymptotic
distribution of the Markov chain mimics the prescribed importance function.
From the point of view of parameter control in global illumination algorithms,
the free choice in MLT is the mutation strategy. There are many possibilities
from which the artist should choose, and the decision will be a crucial factor of
the performance of the rendering, i.e. the image quality obtained in the available
rendering time.

In this paper we build on the Primary Sample Space MLT algorithm and pro-
pose an automatic control mechanism that “learns” the properties of the current
scene in the initial phase of the algorithm and then controls mutations in the
primary sample space in order to maximize the performance. In Section 2, MLT
is summarized briefly, then Section 3 presents our simple statistical approach.
Section 4 demonstrates that the control parameters proposed by the automatic
method are very close to the real optimum.

2 Previous work on MLT

Metropolis sampling was used to solve the global illumination problem first by
Veach et al. [VG97]. Global illumination requires a separate quadrature for each
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pixel:

&, = / Wi(2)F (z)dz,
P

where @; is the power associated with pixel ¢, P is the infinite-dimensional path
space, z is a single light path having contribution F'(z), and W;(z) is the mea-
suring function that is 1 if z contributes to pixel ¢ and zero otherwise.

Monte Carlo methods take M path space samples z1, ...,z the with prob-
ability density p(z) and approximate the integral as a weighted sum of the inte-
grand at these samples:

b; ~ 1 i Wi(zi)F(Zi)'
M i=1 p(2:)
According to the concept of importance sampling, this estimate has a low vari-
ance if density p(z;) is at least approximately proportional to the integrand.
The Metropolis method is a sampling procedure that generates samples mim-
icking a given importance function I(z), i.e. with probability density

_ Iz _ I(z) _
p(z) = m == where b= /I(z)dz.
P P

To do so, it constructs a Markov process whose stationary distribution is propor-
tional to a prescribed importance function I(z) [MRR*53]. The next state z;4;
of this process is found by letting an almost arbitrary tentative transition func-
tion T(z; — z:) generate a tentative sample z; which is either accepted as the
real next state or rejected making the next state equal to the actual state. The
decision uses the acceptance probability a(z; — z:) that expresses the increase
of the scalar contribution function:

I(z) - T(z¢ — z;) 1} .

a(Zi — Zt) = min { I(Zi) .T(zi — Zt)7

It would be tempting to define the importance function directly as the inte-
grand, but this is not feasible because of the following three reasons. Normaliza-
tion constant b involves the integral of the importance function, and if it was the
integrand, the computation of the normalization constant would already require
the solution of the original problem. The Markov process needs some time to
reach its stationary state, which means that it is better to assign a single Markov
process to all pixels than to assign a separate process to each pixel. Finally, the
contribution of path F(z) is typically not a scalar, but a spectrum, while both
the importance function and the probability density must be scalars.

In order to solve these problems, importance function I can be defined as the
scalar contribution to any pixel of the screen, that is, I will be the luminance of
path contribution F(z) and is independent of the pixel measuring function.

Veach recognized that it is also worth using the rejected samples since they
also provide illumination information. Note that a tentative sample is accepted
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with probability a, while the original sample is kept with probability 1 — a.
Replacing this random variable by its mean, both locations can be contributed
but the contributions of the tentative sample and the old sample should be
weighted with a and 1 — a, respectively.

Summarizing, the pseudo-code of the MLT algorithm is as follows:

Generate path seeds
Approximate b = [ I(z)dz from the seeds
Find z; from the seeds using I(z)
for i =1to M do
Based on z;, sample a tentative point z; using T'(z; — z)

. I(z¢)-T(z Z;
a(z; — z;) = min {%, 1}
Select pixel j to which z; contributes
b += - I;((ZZ:)) (1 —a(zi = z))
Select pixel k to which z; contributes

P += 37 Ty - alzi = z)

// accept with probability a(z; — z:)
Generate random number r in [0, 1].
if r < a(z; — z¢) then 2,11 = z;
else Zit1 = Z;
endfor

When a particular MLT algorithm is designed, we have to specify the tenta-
tive transition function that generates a path by mutating another path. There
are several criteria that need to be taken into account during the tentative tran-
sition function definition:

— The mutation strategy should guarantee that the Markov chain is ergodic,
i.e. it has an asymptotic distribution that is independent of the initial state.
To satisfy this requirement, all light paths of non-zero contribution should
be given a chance to be generated as a tentative sample sooner or later.
Veach proposed elementary path modification operators that add and re-
move rays, or modify interaction points in an already existing path. Pauly et
al. [PKKO00] extended these operators to handle participating media as well.
By giving chance to the full re-generation of a path, the ergodicity condition
can be met. From the point of view of parameter control in global illumina-
tion algorithms, the free choice in MLT is the mutation strategy from the
alternatives meeting the requirement of ergodicity. There are many possibil-
ities from which the artist should choose, and the decision will be a crucial
factor of the performance of the rendering, i.e. the image quality obtained
in the available rendering time.

— Unlike other Monte Carlo algorithms, the Metropolis algorithm generates
not statistically independent, but correlated samples, which can increase
the error [SKDP99,APSS01]. Thus, a secondary requirement for mutation
strategies is to keep the correlation low, which means that the possibility of
rejected samples should be reduced.
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— Metropolis sampling converges to the desired probability distribution, but at
the beginning of the process the samples are not selected with the required
probability, which introduces some error in the estimation. This error is
called as the start-up bias [SKDP99]. The original MLT algorithm uses the
following solution for the problem: in a preprocessing phase random samples
are generated and the initial seed of the Metropolis algorithm is selected from
this random population with a probability that is proportional to the scalar
contribution function. Since in this case even the first sample follows the
desired distribution, the start-up bias problem is eliminated in a statistical
sense, i.e. it is converted to noise.

Directly mutating paths in path space is difficult to implement, and the
reduction of rejection rate and thus the correlation seems to be not feasible.
Furthermore, the application developer has too many control parameters that
should be set to define when and what path property must be modified by the
tentative transition function.

The large search space of control parameters is effectively limited and the re-
duction of rejection rate is also successfully addressed by the method of Primary
Sample Space MLT (PSSMLT) [KSKACO02], which executes the perturbations in
the space of uniformly distributed random numbers, called the primary sample
space. PSSMLT is based on the recognition that any light path generator algo-
rithm is a mapping between the primary sample space and the path space, and
if importance sampling is involved in the path generation then more important
regions are represented by larger volume in primary sample space. Thus, mak-
ing uniform mutations in primary sample space automatically reduces the path
perturbation size at important regions and increases it in unimportant regions.
We can also say that the involved importance sampling in path generation (e.g.
BRDF or light source sampling) does one part of the job of optimal importance
sampling, which is further improved by the Metropolis-Hastings scheme by fea-
tures that cannot be included in BRDF and light source sampling. In this sense
PSSMLT is a special type of random number generator that can be plugged in
an arbitrary Monte Carlo method. In classical Monte Carlo methods the random
number generator provides statistically independent uniformly distributed ran-
dom numbers, or k-uniform k-dimensional vectors in primary sample space. In
PSSMLT a feed-back is introduced that transports back the computed impor-
tance and makes the primary samples non-uniform but mimic the importance.
In PSSMLT a simple way of ensuring ergodicity is to generate a primary space
sample point from scratch, independently of the current paths with some positive
probability. Such independent samples are often called large steps.

Theoretically, any positive large step probability makes the Markov process
ergodic, but its selection affects convergence and thus rendering performance,
thus it must be carefully set (Figure 1). Intuitively, we can say that in scenes of
difficult light conditions where only a small part of the path space has non-zero
contribution, most of the large steps lead to zero or negligible contributions,
which are rejected, so large step probability should be kept low. On the other
hand, in open scenes having little occlusion and relatively constant contribution
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Path tracing Bidirectional path tracing

Ground truth

Fig. 1. Images of the Spheres scene after 15 minutes with different algorithms show
that Metropolis Light Transport is the most efficient way to overcome this difficult
specular transport setting. The choice of the large mutation probability has also a
pronounced impact on the render quality.
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in the whole path space, increasing the large step probability will speed up the
exploration of the total path space and thus reduces the start up bias. However,
the optimal selection of the large step probability is not an easy problem.

This paper addresses this issue and proposes an adaptive method to control
the large step probability. The model must be based on parameters that are easy
to estimate while starting the algorithm.

3 The proposed mutation control method

The Monte Carlo estimation formula can also be regarded as a piecewise con-
stant approximation of the original integrand, where the path space domain is
decomposed to finite regions Azq, ..., Az and the integrand is supposed to be
constant in each regions:

M M
Qpi%f —_— Y = lezFZ1A21
M2 () ; (zi) F(2:)
where
Az; = L
' Mp(z;)

In this respect, Monte Carlo sampling is the exploration of the integration do-
main with finite samples and the decomposition of the domain to as many re-
gions as possible. If Metropolis sampling works in the primary sample space, the
transformation of the path space to the primary sample space already executes
importance sampling offered by the path building strategy, e.g. path tracing or
bi-directional path tracing. If the path building strategy is efficient for the par-
ticular scene, the importance sampling is close to optimal, which means that the
path contribution divided by the density is close to constant where it is non-
zero. Note that zero contribution regions keep their zero contribution, so the
path building strategy can only flatten the contribution of non-zero regions.

Metropolis sampling should handle the residual variation of the integrand
after transforming the domain according to the path building strategy. If the
non-zero contribution regions have low variation in the primary sample space,
the efficiency of Metropolis depends on how quickly it explores this space since all
regions of this space have similar contribution. However, if there is a significant
residual variation after transformation, Metropolis should still focus on the high
contribution regions, according to the principles of importance sampling. Thus,
in the first case the efficiency can be characterized by just the size of the explored
domain, but in the second case, the integrand values should also be taken into
account.

The Metropolis method is based on rejection sampling, so it can happen
that a sample is generated many times, which reduces the number of regions
and hence the accuracy of the approximation. The efficiency of the Metropolis
method in obtaining samples that are different from the previous ones can be
characterized by the following three measures:
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— Small step efficiency 7, that is the average probability that a small pertur-
bation is accepted.

— Large step efficiency n; that is the average probability that a large pertur-
bation is accepted.

— The large step non-zero sample probability 7 is the average probability that
a large perturbation generates a non-zero contribution sample. As large steps
are independent and the primary sample space has unit size, this probability
is the volume of the path domain where paths have non-zero contribution.

Note that these parameters can be easily estimated in parallel to the running of
the algorithm and can be obtained from a relatively few number of samples.

These values are not independent of each other when measured on a par-
ticular scene. As Metropolis sampling drives samples towards high importance
regions where small mutations may cause smaller importance decrease, the rela-
tion ns > m; generally holds. On the other hand, the rejection of a large mutation
can be due to a mutation to a zero contribution point or to a point having pos-
itive but smaller contribution than the current state, thus n; < ng.

The ratio n;/ny characterizes the efficiency of the importance sampling of
the path building strategy. If the integrand is flat in the nonzero contribution
regions, then this ratio is close to 1. If it is close to one, the integrand still has
a significant variation which needs to be compensated by Metropolis sampling.

To explore the path space efficiently, both small and large perturbations must
be applied to the path space walk. Small mutations propose new primary sample
points that are in a neighborhood around the point defining the current state.
Large mutations lead to an arbitrary point of the unit volume primary sample
space. The type for the next mutation is given by the large step probability p;.
From a theoretical point of view, any positive value will make the algorithm
converge to the exact solution in the limit. So in the stationary case, all positive
large step probabilities are equivalent. However, the convergence rate is affected,
s0, in order to find an optimal large step probability, the dynamic behavior of
the Metropolis algorithm requires examination.

3.1 Flattened integrand

First we assume that the path building strategy was good in importance sam-
pling, thus the non-zero contribution regions of the primary sample space have
a roughly constant integrand. The convergence is fast if the Markov process ex-
plores the integration domain as quickly as possible. The random walks can be
decomposed into local explorations when only accepted small mutations mod-
ify the sample locations. A local exploration phase is terminated when a large
step is accepted, and the system starts exploring another part of the integration
domain from the seed given by the large step.

The average probability that Metropolis sampling carries out an accepted
large step is then the product of the large step probability and its success ratio,
i.e. py7;- As the number of tried mutations before an accepted large step follows
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a geometric distribution, the expected length of local exploration is

1 —pim
pimi

where 1 is the large step that gets the process to start this local exploration
and 1 — p;n; is the probability that the next sample will also belong to this local
exploration because it is a small step or a rejected large mutation.

During a local exploration, rejected mutations keep the original state while
accepted small mutations modify the sample position additively, i.e. the new
sample will be in the small neighborhood of the previous sample, where their
difference is governed by the probability density of small mutations. As small
mutations are independent, the variance of the perturbations caused by accepted
small mutations is added, thus the average radius d of the space explored by N,
accepted small mutations grows proportional to the square root of the number of
new samples. However, we cannot say that only small mutations can explore the
full space. The first step of the local exploration, which is an accepted large step,
also places a sample. As the perturbation of small steps is set to give the possibil-
ity to walk the whole space when the total number of mutations are executed, we
can safely assume that the large step starting the local exploration is responsible
for the same exploration. Thus, the space visited by a local exploration phase

has expected radius
E[d] = 0y/Ngs + 1

where o is the standard deviation of a single small mutation.
In a local exploration not all Nj,.q; steps belong to the category of new sam-
ples, only those mutations should count that lead to accepted small mutations:

E[Nlocal] =1+

E[N,,] = L—pm (L—p)ns _ (1—pi)ns

P 1—pim i
since (1—p;)ns is the probability that a successful small mutation is tried, and 1—
pim; is the probability that this sample does not terminate the local exploration.
If we generate M Metropolis samples, in average Mp;n; local explorations are
established, each spreading over a subspace of radius o/ Nys + 1, thus the size
D of the total explored space, having projected onto a line is

(1—pi)n

E[D] = Mpmoy[1+ = = = Mmo\/n?p? +nsmpi(1 = o).

The objective of large step probability selection is to maximize the size of the
space explored by M samples, thus we obtain:
Py = argmax E[D],
1

which can be obtained by finding where the derivative of E[D] with respect to
large step probability p; is zero:

Ns

d
— m\/772p2+nsmpz 1-p)| =0 = p=-——.
dpy [ L ( ) 2(773 - 771)
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If large steps are almost as successful as small mutations, this formula can
result in values that are larger than 1. This means that the large step probability
should be set to 1, i.e. only large steps should be executed.

3.2 High variation integrand in the non-zero contribution regions
of the primary sample space

So far, we assumed that the path building strategy already flattens the inte-
grand transformed to primary sample space in the non-zero contribution regions,
and thus the efficiency can be characterized by the speed of space exploration.
However, when the transformed integrand still has large variation, Metropolis
sampling should focus on the peaks of the integrand, thus the explored size itself
is not an appropriate measure for efficiency. Unfortunately, this analysis would
also involve the consideration of the integrand, which cannot be robustly esti-
mated with a few samples and in parallel with the sample generation. We can
only state that in this case, the small steps must be given higher probability
since they will concentrate regions of high contribution while they are poorer in
exploring lower contribution regions. The analysis of the previous section would
propose p; = 0.5 for this case, which is thus an overestimation. Without robust
estimates which upon a theoretical model can be built, we simply propose the
application of p; = 0.25 in this case.

The cases of flattened and not flattened integrands can be distinguished by
considering n;/ng, where we set the threshold to 0.1 above which the integrand
is considered as flattened enough. Thus, the general form of the proposed large
step probability is:

. min{ﬁ,l} where 7;/n9 > 0.1,
l =
0.25, otherwise.

4 Results

We have tried a variety of scenes to demonstrate robustness of the new control
method and selected bi-directional path tracing with russian roulette termination
as the path building strategy, Gauss and Mitchell-Netravali reconstruction filters,
and Gauss or Reinhard tone mapping.

The LuxTime scene is a typical indoors setup with multiple area light sources
where only slight difficulties are present, such as the dial of the watch which can
only be illuminated by light that passes through the glass. This scene is lacking
complex specular paths and the illumination is mainly diffuse interreflection,
which is successfully addressed by bi-directional path tracing, indicating by the
higher 7, /19 =~ 0.4 factor (Figure 3).

The Spheres scene includes dispersion and heavy volume scattering, and the
only light that enters the scene is from the upper left, with a path through mul-
tiple thick glass-like surfaces making it a very difficult light transport situation.
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Scene m ns m | s | P Py

LuxTime 0.377 | 0.783 | 0.985 0.95 0.95 | (0.65-1)
Spheres 0.005 | 0.394 | 0.487 0.51 0.25 0.25

Chess Day 0.061 | 0.641 | 0.886 0.55 0.25 | (0.2-0.4)
Cherry Splash || 0.126 | 0.487 | 0.911 0.67 0.67 | (0.4-0.5)
Cornell 0.004 | 0.438 | 0.022 0.50 0.50 | (0.5-0.6)
Glass Ball 0.088 | 0.489 | 0.87 0.61 0.61 | (0.5-0.6)

Table 1. Scene statistics with the proposed and optimum p; values.

Standard bi-directional path tracing with random walk is unable to render this
scene efficiently, thus there is a significant residual variation of the integrand
even in primary sample space, which is also shown by the very low n;/n =~ 0.01
factor.

The Chess Day scene looks simple, but there are significant glossy interreflec-
tions that cannot be mimicked effectively by the deterministic connection rays
of bi-directional path tracing, and the illumination comes partly through glass
windows (Figure 2). As a result n;/no ~ 0.07.

In the Cherry Splash scene we can also observe complex specular paths, but
they have significantly smaller total contribution than in the Chess and Spheres
scenes.

The Cornell Boz scene is a pathological case, where illumination comes in a
light tube that allows the light to enter the box only after very many specular
interreflections (Figure 3). In this scene, the size of the non-zero contribution pri-
mary sample space domain is 0.022, i.e. even after emphasizing important paths,
non-zero contribution paths occupy only 2% of the space of paths. However,
within this small domain, the integrand is relatively constant, thus 7;/no & 0.18.

Finally, the Glass Ball scene is a typical outdoors setup with glossy inter-
reflections, depth of field and caustics.

5 Conclusions

In this paper we analyzed the convergence properties of Primary Sample Space
MLT, and proposed a method to control its large step probability parameter.
Our method is based on a few statistical parameters, including the success ratios
of small perturbations, large perturbations, and perturbations leading to non-
zero contribution tentative samples. These parameters can be obtained easily
and robustly at the beginning of the rendering process. We also showed that
these parameters tell us a lot about the scene and its suitability for sampling by
the given path building strategy. As Metropolis is responsible to do importance
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Fig. 2. Analysis of the Chess Day scene (left) and the Spheres scene (right). We show
the rendering results with three large step probabilities and also the L2 error curves in

terms of the rendering time.
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Fig. 3. Analysis of the LuxTime scene (left) and the Cornell Boxl scene (right). We

show the rendering results with three large step

curves in terms of the rendering time.

probabilities and also the L2 error
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Glassball scene
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Fig. 4. Analysis of the Glass Ball scene (left) and the Cherry Splash scene (right). We
show the rendering results with three large step probabilities and also the L2 error
curves in terms of the rendering time.
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sampling on the function that is already flattened by the path building strategy,
we can build our proposed large step value on these parameters.
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