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Figure 1: Animating the fluid into the EG logo with the proposed method.

Abstract
In this paper we address the fluid control problem, where, alongside simulating the motion of fluids, an arbitrary
density distribution (a shape of any kind) is given, and forces are exerted on the system with the intention that the
fluid would sooner or later take this form. Prior research work has shown that the problem is challenging because
every region is tightly bound to its neighborhood, therefore a force that acts upon a point will also have effect on
nearby regions, making the controlling process unpredictable. Utilizing optimization and control theory, current
state of the art methods are able to give visually pleasing results at the cost of 5 to 7 minutes of computation time
per frame. We present a novel solution for the fluid control problem with certain restrictions, making it possible to
solve it in real-time.

1. Introduction

Fluid simulation means the mimicking of real fluids by solv-
ing the governing equations with parameters and boundary
conditions reflecting a real scene. Fluid control, on the other
hand, is the determination of parameters in a way that the
resulting fluid motion follows a prescribed behavior.

Let us consider a fluid element of unit mass. Its motion is
described by Newton’s second law, stating that the acceler-
ation ~a, which is the derivation of velocity ~u is proportional
to the total force:

~a =
d~u
dt

= ~Fint +~Fext

where the force is expressed as the sum of internal forces
~Fint and external forces ~Fext. Taking into account the specific
phenomena of fluids, this equation becomes the first Navies-

Stokes equation:

∂~u
∂t

+(~u ·∇)~u =− 1
ρ
∇p+ν∇2~u+~Fext, (1)

where~u is velocity field, ρ stands for the density, p for pres-
sure, ν denotes the kinematic viscosity of the fluid, and the
internal force is decomposed to the force of pressure and the
internal friction. Advection term (~u ·∇)~u shows up because
the fluid element is not followed in the Eulerian viewpoint,
but the location in focus is fixed to the lattice points of a
static grid. This Navier-Stokes equation expresses the con-
servation of momentum. In addition to this, we should also
enforce the conservation of mass to have a realistic simula-
tion. For a detailed introduction to fluid dynamics we refer
the reader to [CM93] and [Bri08].

Considering fluid control, we have to find an external
force field that makes the density field converge to a target
density in time, while retaining only natural movement in
the fluid domain. Applying an external force field intuitively

c© The Eurographics Association 2013.



Zsolnai and Szirmay-Kalos / Real-time Control of Newtonian Fluids

means that we have little spoons of infinitesimal size, which
we use to stir the fluid in the chosen directions, doing it many
places at once. Stirring is determined by the difference be-
tween the obtained and the target density field according to
the negative feedback principle of control theory. Adding ex-
ternal forces accelerates the fluid and keeps it in motion.
However, when the target density is obtained, it should be
maintained in a natural way. The simplest way to do this is
to increase the viscosity, i.e. the friction to dissipate the ki-
netic energy and to make the fluid stop. Note that when the
density reaches the target density, control force ~Fext becomes
zero, having dissipated the kinetic energy by friction, veloc-
ity ~u also becomes zero, which makes pressure differences
∇p zero as well, finally freezing the fluid. On the one hand,
“freezing” some parts of the fluid by increasing the viscosity
prohibits the convergence of other parts since such actions
increase the constraints to be satisfied. On the other hand,
stopping the flow in itself is unrealistic since fluids are sup-
posed to be in motion.

In this paper, we present a novel method to simplify the
optimization approach while improving its convergence by
controlling not only the friction but also the total internal
force. We aim at a dynamic balance where the objective is
satisfied by a constantly moving fluid. The new method is
able to solve the fluid control problem in real time while
retaining realistic looking fluid flows.

2. Related work

Solving the Navier-Stokes equations means the calcula-
tion of time differentials and applying a stable integra-
tion scheme. Jos Stam proposed a stable advection formula
[Sta99]. Simulating fluids on a finite resolution grid has se-
rious drawbacks. Simulation of turbulent flows would re-
quire the modeling of high frequency changes in the veloc-
ity field. Unfortunately, this is quite costly as increasing the
grid resolution raises the computational cost of the simula-
tion significantly. Fedkiw et al. proposed a way to reinject
the lost energy to the system in the form of an external force
field [FSJ01], called vorticity confinement. The second draw-
back of the finite grid approach is that we obtain the velocity
information between the grid point by bi- or trilinear inter-
polation. Unfortunately, the Navier-Stokes equations are not
linear, therefore higher order advection methods, such as the
Back and Forth Error Compensation and Correction Advec-
tion [DL03] and MacCormack Advection [SFK∗08] yield
better quality solutions. It is also possible to obtain addi-
tional realism by using the Wavelet Transform [KTJG08].

Several solutions exists to solve the fluid control prob-
lem, such as Jos Stam’s adjoint method [MTPS04], or the
control of fluids on triangle meshes [RTWT12]. The algo-
rithm of Shi and Yu adds a long-range force field to even
out the distribution of the fluid on a macro level, and a short
range field to carve out the fine details [SY04]. Our approach
builds upon this method, so we briefly summarize it.

2.1. Short-range force fields

The short-range force field is to be constructed to carve out
the fine details of the target distribution locally. In [SY04],
Shi and Yu have shown that the minimization of the follow-
ing functional of short-range force ~FS would make a desir-
able field when the time is stepped forward:

c1 ∑
~x
(∆ρ(~x)−λ∆ρ

a(~x))2 + c2 ∑
~x
(DIV (~x))2−

c3 ∑
~x

 ~FS(~x)∣∣∣~FS(~x)
∣∣∣ · ∇ρ(~x)
|∇ρ(~x)|

2

−

c4 ∑
~x

∑
~y

cos(θ(~y)−θ(~x))+

c5 ∑
~x

∑
~y

(∣∣∣~FS(~y)
∣∣∣− ∣∣∣~FS(~x)

∣∣∣)2
. (2)

The c1, . . . ,c5 coefficients are used to assign different weight
values to the terms. We give an intuitive interpretation of the
formula: the first term is responsible to ensure that the differ-
ence between the current and the target density is minimal by
maximizing the amount of density change in excess density
areas, and minimizing it at areas that match the target density
well. The mass flow has to be divergence-free throughout
the simulation and control process, which can be enforced
by using the long-range force field and evaluating the pro-
jection step afterwards to keep the divergence-free property,
i.e. to preserve the mass during fluid motion. The third term
is the dot product between the normalized direction vectors
of the force field and the gradient of the density field. As
cos(θ(~x)) represents the orientation of the short-range force
field in point ~x, the fourth and fifth expressions are to mini-
mize the amount of directional variance and the magnitude
of the applied short-range force field.

2.2. Long-range force fields

If some part of the fluid domain has excess density, meaning
that the density at point j, ρ j, is higher than the target density
ρ

t
j given by the input distribution, the region will transport

density by exerting force towards the direction of its neigh-
borhood for those who have lower density than the target.
As in physics, the exerted force weakens with the square dis-
tance. This long-range force field is responsible for arrang-
ing the density field so it can start converging to the target
on macro level:

~FL
i = ∑

j

[
ρ j−ρ

t
j
]+

~ri j∣∣~ri j
∣∣3 , (3)

where ~ri j is a vector that points from grid point i to j and
superscript + denotes the operation which keeps the original
value if it is positive and replaces negative values by zero.
Constructing this force field has a quadratic computational
cost of the number of discrete points, which is too demand-
ing. Luckily, it isn’t necessary at all, since as we increase the
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distance will make the force decay, we can safely define a
maximum distance that is to be computed from every point.

2.3. The new method

The most important attribute of the new approach would be
not to use short-range force field due to its computational
costs, therefore omit carving out some of the fine details, but
design a different, cheaper force field that is able to mobi-
lize large amounts of density towards the target distribution
while still retaining a realistic looking flow.

In our version we have also relaxed the evaluation of the
long-range forces to regions that have nonzero target density,

~FL
i = ∑

j

[
ρ j−ρ

t
j
]+

~ri j∣∣~ri j
∣∣3 , ∀ j : ρ

t
j > 0, (4)

to reduce its cost to be proportional to only the volume where
the target distribution is nonzero, as opposed to the original
method, where it is evaluated in the full simulation domain.

It can occur that upon reaching convergence the excess
density remains around the outer side of the boundary of
the target distribution. To clean up these details around
the boundary, an additional force field may be applied that
pushes the density back into the domain of the target dis-
tribution. The use of this cleanup force field is entirely op-
tional, and it would consist of vectors that are oriented from
points that contain density but have zero target density and
are near the boundary to every other point that has nonzero
target density. Formally:

~FC
i =∑

j

ρ j~ri j∣∣~ri j
∣∣3 , ∀i : ρ

t
i > 0 and ∀ j : ρ j > 0∧ρ

t
j = 0. (5)

Depending on the target density distribution type, Neumann-
or Dirichlet-type boundary conditions may be also applied.

Deciding what should happen after the target density is
reached is the crucial task of fluid control. The most straight-
forward solution is to set ν to a very high value to “freeze”
the fluid in the convergent subdomains. The results will re-
main correct, but not very lifelike and generally unconvinc-
ing. Here we address the shortcomings of this approach by
introducing a scaling factor s not only for the friction but for
the total internal force of the fluid. This idea may sound quite
counterintuitive: why speed up the fluid at regions where it
already looks correct? It would be reasonable to say that it
is the exact opposite of what should happen. On a micro-
scopic level, freezing the fluid domain would always be the
best choice: if we have only a few points in space, freez-
ing them by assigning a very high kinematic viscosity value
upon reaching the target distribution will ensure that they
will remain in the correct state at all times. However, let us
consider a simple example on a macroscopic level, where we
have a fluid domain of significant size where the target distri-
bution can be reached only by going through a narrow choke
point. At this region, the fluid will start freezing, therefore it

will prevent any further fluid movement, making it impossi-
ble to get density through. This scenario will not be restricted
only to narrow choke points: for almost every practical case
on closed shapes, the closer we are to the state of conver-
gence, the higher the probability for this to happen.

Intuitively, freezing the fluid can be associated with the
“after you’re done, just stop and rest” behavior, as opposed
to increasing the total internal force, which would mean
more like “after you’re done, start helping others”. This be-
havior will not only allow the fluid to flow through narrow
choke points, but effectively transfer density to neighboring
regions of poor convergence and preserve fluid movement
after the target density is reached.

Putting it all together, the external or control force is the
sum of long-range and the cleaning-up forces:

~Fext = ~FL +~FC,

The Navier-Stokes equation is modified and the internal
force is scaled up by s where the actual density is close to
the target density. The scaled up internal force will main-
tain some motion even close to the converged state when the
control force drops to zero. The modified equation is:

∂~u
∂t

+(~u ·∇)~u = s
(
− 1

ρ
∇p+ν∇2~u

)
+ c~Fext,

s =
{

1+δ, where
∣∣ρt −ρ

∣∣< ε,

1, elsewhere.

(6)

where c is a constant factor to control the magnitude of the
control force field (and therefore the speed of convergence)
and δ is small value to keep the fluid in motion after conver-
gence when the actual density is equal to the target density
within error threshold ε. This technique is capable of guiding
the fluid towards the target distribution in real-time.

3. Results

The properties of the proposed technique are as follows:

• Both the fluid simulation and the control algorithm can
be run in parallel as they take 18 and 14 milliseconds at
most respectively on an 5122 grid with 20 Jacobi itera-
tions, therefore it is a real-time solution.

• It yields remarkably fast convergence speeds.
• It is to be used with target distributions of low-variance

for a high measure of realism, or it is to be used on more
complex, higher-variance distributions with the aid of bi-
ased diffusion at the cost of less realism and more compu-
tational demands.

• Relying only on local data, it can be extended to simula-
tions of any dimension with favorable amount of compu-
tational overhead.

We compared the new method to an uncontrolled simula-
tion, where Neumann-type boundary conditions are defined
but no control force field is applied. Even on the simplest
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scenarios, this uncontrolled flow does not deliver a desir-
able degree of convergence (upper image of Figure 2). This
method is also unable to handle any amount of density which
is not near or inside the target distribution domain. The re-
sults using the new method were rendered in real-time and
are shown in the lower image of Figure 2, which, using
roughly the same amount of density, was able to achieve fast
convergence in the same amount of time.

4. Conclusions

In this paper, we have proposed a novel algorithm to the fluid
control problem, where an initial state and a target distribu-
tion are given for the fluid, with the intention that it would
sooner or later take the form of this distribution. A solution
to this problem is an external force field that is changing in
time, describing the forces that have to be exerted on the
fluid to take a given shape. It is desirable that this force field
makes the fluid converge in a short amount of time while
retaining only natural movements in the fluid domain.
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Figure 2: An imitation of the solution to the fluid control
problem where no control forces, only boundary conditions
are used (upper). The example shows that even if the fluid is
locked inside the domain of interest, it is highly unlikely that
it would suddenly flow into the shape of a star. The proposed
method provides good coverage of the target density, and is
aware of the regions of poor convergence, which are con-
stantly helped out by nearby regions (lower). Roughly the
same amount of density is used in both cases.
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