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Összefoglaló

A mindennapi életünk során előforduló természeti jelenségek megfigyelése

kapcsán joggal gondolhatjuk, hogy a folyadékok mozgása mögött meghúzódó

törvényszerűségek megismerése közel emberfeletti nehézségekkel jár. Valamivel

több, mint száz évvel ezelőtt Claude-Louis Navier és Sir George Stokes egy

rövid, univerzális formulát fogalmazott meg az összenyomhatatlan folyadékok

dinamikájával kapcsolatosan, mely rádöbbentett minket arra, hogy ezek a

szabályszerűségek nem csak hogy megismerhetők, de csupán három összetevő

kiértékelésével még a legbonyolultabb természeti áramlások is modellezhetők.

Mindezek ellenére a folyadékok mozgásának szimulálására alkalmas programot

készíteni nem triviális feladat, ám az erre irányuló erőfeszítéseink nagyszerű

kilátásokkal kecsegtetnek, hiszen napjainkban már rengeteg fizikai és mérnöki

alkalmazásban is hasznosnak bizonyultak. Ezen szakdolgozatban az eddigi

kutatási eredmények felhasználásával megmutatjuk, hogy hogyan készíthető

el egy olyan rendszer, mely képes hatékonyan megoldani a Navier-Stokes

egyenleteket.

A dolgozatban szó esik a folyadékirányítási problémáról is, mely megoldásához

a folyadék térfogatban való szimulációja mellett egy végső sűrűségeloszlás

(egy tetszőleges alakzat) is adott, amihez egy időben változó, külső erőteret

definiálunk azzal a célzattal, hogy a folyadék előbb-utóbb ezt a formát

vegye fel. Az eddigi kutatási eredmények egyik fontos konklúziója, hogy

a probléma több szinten is kiemelkedő nehézségű: elsőként, a térben vett

minden anyagi pont környezetében több másik anyagi pont is található,

melyekkel az szoros interakcióban van, így külön körültekintéssel kell

lenni arra, hogy az egyikükre kifejtett erőhatás hogyan fog hatni annak

szomszédságában. Másodszorra, egy kívánatos, de ugyanakkor szintén

ambivalens követelmény is megfogalmazódott, miszerint a folyadékmozgásnak

a külső erőtér hozzáadása mellett is természetesnek kell hatnia, még

akkor is, ha olyan erősen valószínűtlen áramlásokat írunk le, mely során a

víz egy térfogategységben egy emberi arc, vagy egy felhőkarcoló alakját veszi fel.

Az eddigi legígéretesebb kutatási eredmények a funkcionálanalízis és

az irányításelmélet területén használt kifinomult matematikai módszerek alka-



lmazásával képesek a probléma kezelésére, ám ezeknek az árát képkockánként

5-7 percnyi számításigény kivárásával kell megfizetnünk. Ez gyakorlati-

lag kétórányi munkaidőt jelent minden egyes másodpercnyi anyag elkészítésére.

Ezen szakdolgozat hasábjain egy újszerű megközelítést képviselő algo-

ritmus részleteit mutatjuk be, mely képes a folyadékirányítási probléma valós

idejű megoldására, és az eredménye akár egy átlagos otthoni számítógép

használatával demonstrálható.



Abstract

When observing natural phenomena in our everyday life involving

complex fluid flows, one may feel that it ought to be immensely difficult

to understand the underlying laws of fluid motion. More than a hundred

years ago, Claude-Louis Navier and Sir George Stokes came up with

a short universal formula that describes the motion of incompressible

fluids. This made us realize that these underlying rules are surprisingly

simple: even the most difficult looking flows can be understood by the

evaluation of only three terms. Implementing a fluid simulation program

on computer hardware based on this equation is not a trivial problem,

however, it is quite rewarding: these simulation programs serve a vast array

of applications in physics- and engineering-related problems. In this thesis,

based on previous research work, we show a highly parallel framework that is

capable of giving an effective numerical solution of the Navier-Stokes equations.

Here we also address the fluid control problem, where, alongside sim-

ulating the motion of fluids, an arbitrary density distribution (a shape of

any kind) is given, and forces are exerted on the system with the intention

that the fluid would sooner or later take this form. Prior research work

had shown that the problem is of enormous difficulty due to multiple

reasons: first, every region is tightly bound to its neighborhood, therefore

a force that acts upon a point in space will also have effect on nearby

regions, therefore making the controlling process unpredictable. Second, it

also a desirable, but ambivalent requirement that the controlling external

force field should make the fluid flow realistic, even though it is highly

improbable that a given volume of water would suddenly flow exactly into

a shape of a human face or a skyscraper. Utilizing highly sophisticated

mathematical methods from different fields such as optimization and

control theory, current state of the art methods are able to give visually

pleasing results at the cost of 5 to 7 minutes of computation time per frame,

effectively taking more than two hours of time for every second of video footage.

In this thesis work, we present a novel solution for the fluid control

problem, making it possible to solve it in real time, even on home computers



with limited processing power.





1 INTRODUCTION

1 Introduction

1.1 Motivation and Contributions

For the untrained eye, natural phenomena involving fluid movement may look

incomprehensibly complex. Now, for a little more than 100 years, we have had the

privilege of knowing the few simple rules that account for the immensely complex

flows of waterfalls, pouring honey, or the air turbulence experienced during an

airplane flight. The world of the motion picture industry had also shown interest the

topic: in order to enhance the visual impact of movie clips, it is now common to

show simulation results alongside with real life footage with physically based fluid

and gas simulation programs. The realism has now reached a point where even a pro-

fessional with a keen eye would be hard-pressed to distinguish the real from the unreal.

About ten years ago, equipped with all this knowledge regarding the mo-

tion of fluids, an interesting new question has emerged: what if we could not only

simulate, but control fluid movement? What kind of forces are needed for a fluid to

take a given direction or shape? What if we could not only predict disasters such

as the tsunami or hurricanes, but avoid them entirely? What if we could not only

predict blood flow in the human body but prevent the development of a deadly

aneurysm in the aorta? Later, in Section 1.3 we show prior research work on how

the answer could possibly have saved Albert Einstein’s life. This question is what

scientists call the fluid control problem and a novel method to solve it efficiently

will be the topic for this thesis work. There are also artistic applications of the topic

(Figure 2), even in Hollywood motion picture productions (discussed in Section 6).

However, solving the fluid control problem proved to be immensely difficult: we

know of no real time solution that exists as of now, and even the best state-of-the-art

methods take 5-7 minutes of computation time for every frame, therefore one second

of video footage would take at least two hours of wait time. The wide variety of

applications showed that the industrial world could take immense advantage of a

real time solution to the problem. This is no different in motion picture production:

no film studio is going to pay its artists to click once and then wait hours in or-
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1 INTRODUCTION

Figure 1: Andreas Burmberger’s Cherry Splash scene exhibiting
surface tension computation.

der to know how the last changes affects the view of the scene that’s being worked on.

In this thesis, we present the following contributions:

- A review of the mathematical background of computational fluid dynamics,

- Statement of the fluid control problem and a brief overview of a state-of-the-art

solution to it,

- Observations regarding the fluid control problem, where simplifications can

be made to the target distribution while retaining its applicability to both

industrial and artistic use,

- A novel, highly parallelizable method to simplify the optimization approach

that relies only on local data, and which is able to solve the fluid control

problem in real time while retaining realistic looking fluid flows.

- An implementation of the algorithm on GPU hardware that is released alongside

this thesis work, which is under the GPL license and is freely accessible for

everyone through the department website.

13
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1 INTRODUCTION

Figure 2: Demonstration of the artistic side of the fluid control problem.
Image source: Yizhou Yu.

1.2 Computational Fluid Dynamics

In 1822, Claude-Louis Navier and Sir George Stokes have made an important

contribution to the world of mathematics and physics by formulating partial

differential equations that describe how the motion of fluids changes in time [1].

Computational fluid dynamics is a vital part of fluid mechanics which incorporates

numerical methods to visualize and solve problems involving fluid flows, which,

most of the cases means solving the Navier-Stokes equations with given periodic or

bounded initial conditions. These equations also pose an interesting and challenging

mathematical problem as it is still unknown whether smooth solutions exist for any

three-dimensional system with given boundary conditions. This is one of the seven

Millennium Prize Problems1, and anyone who is able to come up with a solution

or a counterexample is awarded $1.000.000 US dollars. The smooth solution itself,

whether it always exists or not, isn’t that important, but the process of solving it

is expected to show new insight to the behavior and the understanding of partial

differential equations.

As the problem is given in the form of a partial differential equation, which

often proves to be of great difficulty or even impossible to solve for practical cases,

with the use of the finite element method it is possible to obtain a numerical solution

of remarkable accuracy by solving the equation on a sufficiently high resolution

discrete grid. However, the solution is still not trivial: the evaluation of the advection

term of the fluid (discussed in Section 2 and 3.2) will not result in a stable fluid flow
1The problem statement and details are accessible on the The Clay Mathematics Institute’s

Millennium Prize Problems website.
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1 INTRODUCTION

simulation. In order to overcome this, a clever treatment of Jos Stam’s [2] is applied.

1.3 Applications of Fluid Dynamics

Computational fluid dynamics enjoys a wide variety of use in a number of

engineering and physics problems: it is possible to visualize heat distribution

in a newly designed car engine, to validate airplane design by performing wind

tunnel tests with a computer software (Figure 6), simulate gas or water flow in

chopper pumps (Figure 4a2), visualize and plan optimum air circulation in buildings,

calculate the drag for accelerating vehicles of various shapes (Figure 5), or to

understand the possible outcomes better when a catastrophe, such as a flood, the

tsunami, or a volcanic eruption happens. There are also methods to help the medical

examination of humans by detecting probable spots in the aorta for aneurysms, little

bulges in the wall of blood vessels, which, under extremal pressure conditions, may

explode, causing oftentimes lethal implications. This is what also caused the death

of the famous physicist, Albert Einstein, where more in-depth knowledge of fluid

dynamics may have saved his life.

In [3] an MRI reconstruction problem is discussed, which is followed by a

blood flow simulation to help blood hemodynamic analysis for recognizing congenital

diseases early on. The results can be viewed in Figure 3. We also show a wind flow

visualization3 around a chimney stack on in Figure 4b and measurement test results

of turbulent wind flows near the Concorde airplane in Figure 6. It is also worth

noting that the Navier-Stokes equations, combined with Maxwell’s equations of

electromagnetism, enable us to arrange experiments in magnetohydrodynamics, the

study of magnetic fields in electrically conducting fluids.

1.4 The Eulerian and Lagrangian Approach

There are different ways to approach the numerical simulation of fluids. The

Lagrangian method treats the fluid as a collection of particles that move in space

and time according to their velocities and positions. The Eulerian approach is named
2The simulation is obtained by ANSYS CFD, and the source of the image.
3We show some works of Henri Werlé, which are accessible at the eFluids website and On the

Flow of Fluids Made Visible, Henri Werlé, Leonardo, Vol. 8, No. 4. (Autumn, 1975), pp. 329-331.
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1 INTRODUCTION

Figure 3: A sequence of images where upon obtaining the centerline of the aortic
arch (second image) from the volume rendering (first image) of an MRI image,
blood in- and outflow informations are gathered (third image) to simulate the
blood flow of the patient. Image source: Lucian Itu [4].

after Swiss mathematician and physician Leonhard Euler, who took the problem

from a different point of view: it defines a stationary grid by its points, and the

relevant quantities like pressure, velocity and density are measured in these points.

The fluid is expected to flow through and between these grid points. The quality of

the simulation depends greatly on the resolution of the grid (i.e. how densely these

points are strewn in space where we measure) and since it is impossible to compute

the quantities in infinite points of the continuum, an interpolation function is used

to obtain information from between the sample points. Both viewpoints utilize the

techniques of the finite element method, which, through problem discretization,

offers valuable tools to approximate the solutions of partial differential and integral

equations with difficult boundary conditions.

László Szirmay-Kalos has given an intuitive example to help understanding the key

difference between the two viewpoints: when collecting data for a weather report, the

meteorologist can sit in an air balloon and measure quantities like temperature, wind

speed and directions, humidity while floating along the flow of the air. This would

be the Lagrangian approach. Someone utilizing the Eulerian viewpoint may simply

set up stationary measurement devices in various places throughout the country. In

Section 3.2, we discuss the background of the Eulerian approach of computational

fluid dynamics.

16



2 THE NAVIER-STOKES EQUATIONS

(a) (b)

Figure 4: (a) The observation of a chopper pump in a simulated wind tunnel
makes it possible to understand what shapes the curved blades have to
take on the impeller to maximize the throughput of the device. (b) Henri
Werlé’s test visualization shows the trajectory of the smoke plume emitted
by the chimney and also the well-known horseshoe vortex on the ground.
The source of the images are given in the corresponding section.

2 The Navier-Stokes Equations

The Navier-Stokes equations are statements about the motion of fluid substances,

which are assumed to be incompressible, homogeneous and Newtonian:

∂u

∂t
= −(u · ∇)u︸ ︷︷ ︸

advection

− 1
ρ
∇p︸︷︷︸

pressure

+ ν∇2u︸ ︷︷ ︸
diffusion

+ Fext︸︷︷︸
external forces

, (1)

∇ · u = 0, (2)

where u is the traditional notation of the velocity field in fluid mechanics, ρ

stands for the density, p for pressure, ν denotes the kinematic viscosity of the fluid,

and F ext is the representation for the sum of all external forces.

2.1 The Momentum Equation

On the left-hand side of the first equation, called the momentum equation provides

the answer for the most fundamental question of fluid flows: in which direction a

17



2 THE NAVIER-STOKES EQUATIONS

Figure 5: Wind tunnel tests reveal the amount of drag acting upon the caravan
towed by an automobile.

given particle of the fluid will continue its path in the moment. Mathematically

speaking, we would like to know how the velocity vector field changes in time. Before

proceeding to further observations, perhaps it is helpful to note that this equation is

equivalent to Newton’s second law [5], F =ma for which we show a derivation in

Appendix A. The right side of the equation can be written as a sum of three simple

terms: advection, diffusion, pressure, and if needed, an external force field.

They all describe real life natural phenomena, therefore they all have their intuitive

meanings. Let us take a brief look at them:

Advection

The motion of a fluid causes motion to any quantity that it contains, as dropping

objects into a river will make them follow the flow. The terminology refers to it

as advection or convection, which phenomenon is the heart, and also the bane of

every fluid simulation program. However, it is not a widely known fact that the

velocity field moves itself as well, not just the objects within it - the mathematical

formulation for this is the directional derivative (u · ∇) of the velocity field,

−(u · ∇)u.

18



2 THE NAVIER-STOKES EQUATIONS

Figure 6: Front view of the wind flow around the Concorde from a
landing configuration, made by Henri Werlé.

The presence of the minus sign shows up as a result of the rearrangement in the

derivation shown in Appendix A.

Pressure

In any kind of physical system, particles in higher pressure regions are pushed

towards lower pressure regions. We can compute the direction of the pressure field

in an arbitrary point by calculating ∇p, which is the gradient of the pressure field.

Intuitively, this will point into the direction of the steepest ascent of the pressure -

as mentioned above, this pushing force will lead to acceleration in the fluid. Because

higher pressure regions push lower pressure regions and not the other way around,

the direction of the flow is represented by −∇p instead. This almost looks like the

full pressure term, but so far we haven’t taken into account the density of the fluid.

As we need to exert more force to get a denser fluid into motion, the pressure force

19



2 THE NAVIER-STOKES EQUATIONS

is divided by ρ:

−1
ρ
∇p.

Diffusion

It is a well-known property of fluids that differences in concentrations average

out in time - when dripping ink into water, it will spread perfectly over time, giving

the same color for the whole glass of fluid. Different types of fluids react differently

to external forces - some of them are more resistant to the force we apply on them.

For example, pouring honey into a cup of tea may take some more patience than

doing the same with water. Diffusion defines this kind of motion using the Laplace

operator (∇2), which gives the sum of all the second partial derivatives of a quantity.

Intuitively, applying this differential operator for a quantity gives the difference

between a point and the average value between its neighboring points. For example,

∇2u=0 practically means that the velocity at each point is equal to the average of

the nearby points. Any fluid and gas type material in nature is striving to achieve

this equilibrium state. Now it is simple to understand the formal representation of

diffusion: bigger difference of velocity and density means more motion is needed to

balance it. In the formula, we also use a dampening factor, the kinematic viscosity,

which describes the resistance of the fluids against these forces. It can be thought

as the fluid’s strength to fight back to prevent this kinematic stress - higher

viscosity yields more resistance and therefore, slower movement (e.g. honey or differ-

ent types of cocktails where multiple layers of fluids can be seen on top of each other).

ν∇2u

External force field

This is meant to be the sum of all forces that are exerted on the fluid and has

nothing to do with the fluid’s internal mechanics. The source of these forces can

be practically anything: gravity drag, blowing wind, or even user interaction in a

simulation program. The external force field Fext accelerates the velocity field at

each point, therefore taking this term into consideration is as simple as adding the

two vector fields together.

20



2 THE NAVIER-STOKES EQUATIONS

2.2 Incompressibility Condition

In a similar notation as Bridson used in [6] (p. 17), let Ω be an arbitrary part of

the fluid volume with boundary surface ∂Ω. The rate of change for this volume is

measured by integrating the normal component of its velocity around the boundary,

which intuitively gives the amount of density that enters or leaves the volume:

∫∫
∂Ω
u · n dΩ = d

dt
vol(Ω). (3)

For an incompressible fluid, the volume remains constant over time, therefore the

change rate of the volume is zero:

∫∫
∂Ω
u · n dΩ = 0. (4)

The Divergence Theorem states that the outward flux of a vector field through a

closed surface is equal to the volume integral of the divergence of the region inside

the surface. An equivalent, but more intuitive interpretation of this theorem is that

for a quantity, sum of all sources minus the sum of all sinks gives the net flow out of

a region: ∫∫
∂Ω
u · n dΩ =

∫∫∫
Ω
∇ · u dΩ = 0. (5)

This equation must hold for an arbitrary choice of Ω (meaning any possible region).

Our function integrates to zero regardless of the choice of volume for integration.

This implies the integrand to be zero everywhere (and vice versa):

∀Ω :
∫∫∫

Ω
∇ · u dΩ = 0 ⇐⇒ ∇ · u = 0. (6)

We are now familiar with the definition of the second Navier-Stokes equation (2).

In the future we will refer to it as the incompressibility condition - any

vector-field that satisfies this condition has to be divergence-free. A divergence-free

velocity field implies mass conservation for fluids, which, in simple terms, would

mean that no mass (and therefore energy [7]) is created or destroyed in the system.
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Figure 7: Aaron Hill’s Cornell box scene incorporates heavy use of
boundary conditions and volume ray tracing techniques.

3 Numerical Solution To The Navier-Stokes Equations

As we now have a precise mathematical model for simulating fluid flows, the

objective would be to give an analytical solution the Navier-Stokes equations discussed

in Section 2. Unfortunately, with the exception of a few simple setups, this is

impossible. This should be taken into account, especially for critical applications

where complex scenarios are given, and exact solutions are required. For example,

when designing a race car, it should be beyond argument that it is a matter of life

and death to model every kind of force that applies to the chassis as accurately as

possible, therefore very accurate (if not analytical) solutions as required. However, if

our goal is to produce convincing visual footage of fluid flows, it may be well enough

to give a close enough approximate solution to the equations, preferably in real time.

In this chapter, we discuss solution techniques that are able to achieve both kinds of

realism.
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3.1 The Algorithm

As initial conditions, we have a (possibly empty) initial velocity vector field and

a scalar field for both pressure and density. The simulation is broken into 4 basic

steps, evaluated one after other:

1. Compute the advection of the velocity field,

2. Calculate diffusion,

3. Apply the external force field,

4. Project the velocity field to its divergence-free component.

Techniques like vorticity confinement and buoyancy force computation should also be

carried out in the force field application step. These techniques will also be discussed

in this section.

3.2 Evaluation of The Terms

In order to solve the Navier-Stokes equations (1) with given initial conditions, we

have to evaluate several kinds of differential operators, which all require derivative

information. As it is too demanding (and often not possible) to compute these

derivative informations analytically, we solve the problem through discretizing it

onto a 2 or 3 dimensional grid, where the much simpler finite differential form of the

operators can be used. We show this form for the gradient operator to evaluate the

pressure term and the Laplace operator to evaluate the diffusion processes in the

fluid. For the advanced techniques discussed in Section 3.6, we also show the finite

difference form for the divergence and the curl operators.

We also show that it is not trivial to evaluate the directional derivative in

the advection term, as a regular forward projection gives results that leave

much to be desired: this is an unstable method, therefore the simulation is to

‘‘blow up’’ in a matter of seconds, even when simulating time steps of little magnitude.

The finite differential form of the required operators are the following, as-
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suming δx, δy is the distance between two gridpoints in x, y directions:

Gradient: ∇p =
(
∂p

∂x
,
∂p

∂y

)
≈
(
pi+1,j − pi−1,j

2δx ,
pi,j+1 − pi,j−1

2δy

)
(7)

Divergence: ∇ · u =
(
∂u

∂x
+ ∂v

∂y

)
≈
(
ui+1,j − ui−1,j

2δx + vi,j+1 − vi,j−1

2δy

)
(8)

Laplace: ∇2f =
(
∂2f

∂x2 + ∂2f

∂y2

)
≈
(
fi+1,j − 2fi,j + fi−1,j

2δx + fi,j+1 − 2fi,j + fi,j−1

2δy

)
= fi+1,j + fi−1,j + fi,j+1 + fi,j−1 − 4fi,j

δx2 + δy2

(9)

Curl: ∇× u = det


î ĵ k̂
∂

∂x

∂

∂y

∂

∂z

u v w

 =
(
∂w

∂y
− ∂v

∂z

)
î +
(
∂u

∂z
− ∂w

∂x

)
ĵ +
(
∂v

∂x
− ∂u

∂y

)
k̂

(10)

Regarding the advection term −(u · ∇)u, the weapon of choice would be to project

the velocity field forward with ∆t by using the general formula

r(t+ ∆t) = r(t) + u(t)∆t, (11)

however this would immediately violate energy and mass conservation, since nothing

could ensure that the forward projection does not force the fluid to leave the piece

of volume that we are simulating. To overcome this issue, we follow Jos Stam’s

intuitive solution [2], where instead of checking how the current density field would

evolve in a ∆t time step, we project the density field backwards and see where the

density came from for every point on the grid:

r(x, t+ ∆t) = r(x− u(x, t)∆t, t). (12)
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Figure 8: Giulio Jiang’s Picopool scene.

While this is both an effective and stable solution to the problem, the accuracy of

the solution depends greatly on the choice of ∆t. A time step of too great size may

as well blow up the whole simulation, therefore it should be chosen wisely. In our

experiments, choosing ∆t ≤ 10−1 have always resulted in a stable simulation.

3.3 Boundary Conditions

When solving differential equations of any kind, explicit informations may be

provided on how the solution should behave on the boundary of the region that is

governed by the differential equation. We refer to these informations as boundary

conditions, and give a short review on their definitions and uses in computational

fluid dynamics.

Dirichlet-type boundary conditions specify the values of the solution on

the boundary surface of the problem domain. They take different forms for ordinary
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differential equations (ODE) and partial differential equations (PDE):

ODE: y′′ + y′ + y = 0,

y(a) = ψ, y(b) = φ,

PDE:
∂2u

∂x2 + ∂2u

∂y2 = 0,

u(k) = f(k) on ∀k ∈ ∂Ω.

(13)

Neumann-type boundary conditions specify the normal derivative of the function

on a surface. It is particularly useful in fluid simulations and heat diffusion equations,

where it is possible to specify zero derivatives on the Neumann-boundary, effectively

meaning that no fluid or heat may enter or leave the simulation domain, therefore

making it possible to simulate the interaction between fluids and rigid objects that

are placed inside them.

ODE: y′′ + y′ + y = 0,

y′(a) = ψ, y′(b) = φ,

PDE:
∂2u

∂x2 + ∂2u

∂y2 = 0,

∂u

∂n
(k) = f(k) on ∀k ∈ ∂Ω.

(14)

Please note that when solving the Navier-Stokes equations, the initial conditions for

the velocity and density field, therefore an initial state of the vector and scalar fields

should be given - most of the time, we simply initialize them to be zero everywhere,

but for certain test cases, continuous functions may also be initialized.

3.4 Sparse Systems of Linear Equations

Consider a set of linear equations given in matrix form:

Ax = b (15)
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where A is an n× n matrix and x,b ∈ Rn.

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
... ... . . . ...

an1 an2 · · · ann

 , x =


x1

x2
...

xn

 , b =


b1

b2
...

bn

 (16)

In a sparse system, most of the elements of A are zeros, therefore it is significantly

less demanding to store only the nonzero elements instead. A is usually decomposed

into the sum of a diagonal and a remainder component matrix by

A =


a11 0 · · · 0

0 a22 · · · 0
... ... . . . ...

0 0 · · · ann


︸ ︷︷ ︸

AD

+


0 a12 · · · a1n

a21 0 · · · a2n
... ... . . . ...

an1 an2 · · · 0


︸ ︷︷ ︸

AR

, (17)

and therefore as the solution of the equation, we get:

Ax = b

(AD + AR) x = b

AD x = b− AR x

x = A−1
D (b− AR x).

Please note that computing A−1
D is trivial as it is a diagonal matrix, therefore the

inverse matrix will contain the reciprocal of the elements.

Unfortunately, iterative methods will not be convergent in every case - the

requirement of convergence depends on the properties of the A−1
D AR matrix. The

spectral radius of a matrix is given by

ρ(R) = max
j
{|λj|} (18)
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where λj are the eigenvalues of the matrix. It is shown [8] that an iterative method is

convergent if and only if ρ(R) < 1. Lower spectral radius yields better convergence

speed, therefore it is desirable to find decompositions for A that have the lowest

possible ρ(R).

To reduce the computational error further, multigrid methods are often ap-

plied where instead of one, a hierarchy of discretizations is used, in which the final

results include the solutions on a fine grid and global corrections are taken from

the coarser scales. Adaptive multigrid methods exhibit mesh refinement where the

resolution of the grid is increased to convey more realism for more important parts

of the fluid domain.

3.4.1 Jacobi Iteration

The Jacobi iteration is far from the best linear system solving methods in terms

of convergence, however, it is the most straightforward technique to implement, and

also serves as a building block for other, more sophisticated methods. In the first

Jacobi iteration we give an initial guess, x(0), which is improved in every iteration

according to the following formula:

x
(k+1)
i = 1

aii

(
bi −

∑
∀j 6=i

aijx
(k)
j

)
, i = 1, . . . , n. (19)

Note that this formula is equivalent to the derivation shown before in Section 3.4.

The advantage of the method is that the elements of x(k+1) may be computed in

any order, making it an effective option to use it on parallel computer architectures,

such as the GPU.

3.4.2 Gauss-Seidel method

The convergence rate of the iterations can be further improved by using the

newly computed x(k+1) values immediately (where available) in the same iteration
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Figure 9: Giulio Jiang’s Water Rainbow scene is a good example of the
beauty of modeling turbulent water flows.

instead of saving them to the next iteration step.

x
(k+1)
i = 1

aii

(
bi −

∑
∀j<i

aijx
(k+1)
j −

∑
∀j>i

aijx
(k)
j

)
, i = 1, . . . , n. (20)

This gives a significant improvement on the speed of convergence, and also there

is no longer a need to allocate two arrays for x(k) and x(k+1), however, the order of

the elements is no longer an arbitrary choice. Different strategies exist to address

this problem, such as Red-Black ordering, or the natural ordering scheme which

processes the elements row by row.

3.5 Helmholtz-Hodge decomposition

A mathematical method, known as the Helmholtz-Hodge decomposition ([9] p.

37, [2]) states that any w vector field can uniquely be decomposed to a sum of a

divergence-free vector field and a gradient of a scalar field:

w = v +∇q, (21)
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provided that ∇ · v = 0, and is is parallel to the boundary (v · n = 0 on ∂D), and q

is a scalar potential field. Let P(·) be a projection operator which maps a vector

field to its divergence-free part. The scalar field q is given to satisfy P (∇q) = 0 and

from the zero divergence property of v comes P (v) = v, therefore P (w) = v will hold.

In order to maintain consistency with the incompressibility condition, (2),

we can use the same idea and project both sides of the first Navier-Stokes equation

(1),

P
(
∂u

∂t
+ 1
ρ
∇p
)

︸ ︷︷ ︸
v+∇q

= P
(
−(u · ∇)u+ ν∇2u+ Fext

)︸ ︷︷ ︸
w

. (22)

The vector field u has divergence-free property, therefore it is invariant under

projection. This will also be true for ∂u/∂t if u is smooth, giving (P (∂u/∂t) = ∂u/∂t).

After discarding the pressure term from the left side as P (∇p) = 0, we get

∂u

∂t
= P

(
−(u · ∇)u+ ν∇2u+ Fext

)
, (23)

which, as discussed in Section 3.1, is the final form of the equation to be solved in

the projection step of the simulation cycle.

A different kind of solution can be given by multiplying both sides of (21)

with the nabla operator, ∇, where we get

∇ · w = ∇ · v +∇2q. (24)

As v has zero divergence, this expression simplifies to

∇ · w = ∇2q, (25)

which we call the Poisson equation. Following the formulation of Shi and Yu [10], the

decomposition can equivalently formulated as a least squares minimization problem,

where

min
q

∫∫
Ω
||∇q − w||2 dΩ, (26)
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and the solution for this optimization problem will be the solution of the Poisson

equation, ∇2q = ∇ · w, which can be expressed as a sparse linear system, where

sophisticated optimization algorithms, such as the conjugate gradient method or

the methods discussed in Section 3.4 can be applied to solve it efficiently. A more

general statement of the Helmholtz Theorem is shown in Appendix B.
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Figure 10: An artistic simulation with a slightly exaggerated effect
of vorticity confinement. The source of this image is found in the
corresponding section.

3.6 Additional Realism

In artistic applications where a very high degree of realism is a requirement, the

resolution of the simulation grid has to be raised significantly. As this operation

introduces a computation time overhead of Θ(nd) magnitude for a d-dimensional

simulation, it is often implausible to increase it to the desired level. In this section

we give a brief overview of advanced techniques such as Vorticity Confinement and

Wavelet Turbulence to further enhance the realism of the simulation with preferably

less cost than simply increasing the resolution would take. To be able to simulate

the flow of gas type substances properly, the modeling of Buoyancy and Convection

forces are discussed here.

3.6.1 Vorticity Confinement

After sufficient amount of careful observation, one may notice that the most

common flow type of fluids is when particles run in parallel layers, with no disruption

between them. These type of flows are called laminar flows, or may also be referred

as streamline flows. When force is applied to a piece of fluid, the pressure and
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velocity properties may change rapidly in both space and time, resulting in a highly

irregular, chaotic flow type called turbulent flow. A good example for this is when

low viscosity fluids contain rotational flows of varying sizes. This is what we call

vorticity, a high frequency phenomenon that is expected to be captured in every

decent simulation environment.

At this point, the advantages of the finite grid representation and a stable

advection formula should be clear. Though, it should be noted that the approach has

its own drawbacks - a fluid that’s simulated on a coarse grid will dampen faster than

it would do in reality, causing small scale vorticity to disappear from the simulation.

We give a detailed overview of this phenomenon in Section 3.6.3. Fedkiw et al. [11]

proposed a method to reinject the lost energy into the system, thus minimizing the

error due to the nature of the solution.

The vorticity of the velocity field u is given by

ω = ∇× u. (27)

By computing the gradient of ω we get a vector field that points towards the center

of the vortex:

µ = ∇|ω|. (28)

Because ω contains information about the size of the vortex and the direction to

the center, we only wish to use the latter, therefore it is plausible to normalize µ by

dividing by the vector lengths

Ψ = µ

|µ|
, (29)

so Ψ points to the center of the vortex and u towards the axis of the rotation.

To be able to increase the strength of the rotation, their cross product will be

taken, multiplied by an ε parameter that helps to adjust the weight of the vorticity

confinement term. We now have the full expression

Fvc = ε (Ψ× ω), (30)
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that will be a term to be added to the external forces at any given time. Note that

this method is not physically based, and is mainly used to help the modeling of high

frequency turbulent flows as shown in Figure 104.

3.6.2 Buoyancy And Convection

It is well-known that hot and cold fluids and smoke behave in different ways -

the hot smoke of a cigar rises, cold air sinks due to the fact that colder particles are

heavier, causing them to be pulled downwards by the gravitational force. Temperature

and density differences therefore have effect on the velocity field. These effects can

be observed in natural phenomena, such as oceans, rivers, lakes, or a steaming cup

of coffee, and can be modeled efficiently by replacing the gravitational force Fg with

the following term:

Fb = (−κρ+ σ(T − Tamb)) ĵ, (31)

where κ and σ are constant scale factors for mass and temperature, ρ is smoke

density, T and Tamb are the temperature of the fluid or smoke and the ambient

temperature, respectively, and ĵ denotes the unit vector for the vertical direction.

This term will behave as an external force field, and should be applied to the Fext
term of (1) by addition. The fine tuning of the scale factors will modify the behavior

of the buoyant force: the first term shows how strongly heavier particles will be

gravitated downwards, the second is the relative amount of lifting force that is

exerted on the particles that are hotter than the environment. This lifting force

term of the formula reduces to zero for T = Tamb substitution. Please note that by

plugging appropriate viscosity values into the Navier-Stokes equations and using

buoyant forces, not only fluids but most gas type substances, like air, helium and

nitrogen can be simulated.

3.6.3 Wavelet Turbulence

The most visually appealing effects in fluid and smoke simulations are arguably

the accurate modeling of turbulent flows. However, rendering photorealistic

quality video footage requires tremendous amount of resources. With the use

4The image is taken from a 2012 reel video, which is a property of Fusion CI Studios.
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of the finite element method, the Navier-Stokes equations are solved on a

discrete grid, therefore qualities like the density of the fluid are only known in

these intersection points. For any grid with finite resolution, there is a Nyquist

limit [12], therefore a maximum frequency value exists which the method can

reconstruct. Above these frequencies no information can be extracted, making

it a straightforward choice to increase the grid resolution to the highest possible value.

In a 3D case, however, the required operative memory and computation

time will be of Θ(n3) magnitude, therefore home computers are left out of the

enjoyment of rendering high frequency turbulent flows, which are thus meant to be

for render farms only. In [13] a novel approach is presented, exhibiting Kolmogorov’s

theory of turbulence and the Wavelet Transform to generate and inject turbulent

flow informations into previously existing, low resolution simulations. Kolmogorov’s

theory [14] states that fluid flows are composed of larger and smaller swirls, which

we refer to as eddies. Large eddies travel through the velocity field, where they get

both compressed and stretched from different directions, therefore they get broken

up into eddies of smaller size. We call this phenomenon forward-scattering. The

opposite of this can also happen, where two eddies of smaller size are compressed

together, disappearing, and thus forming a bigger eddy. Kolmogorov has given a

probabilistic model, which, through the evolution of the fluid flow in time, is able

to predict the kinetic energy distribution of the domain. This is referred to as the

‘‘five-thirds’’ law, describing that as we observe higher frequency components of the

velocity field, the kinetic energy distribution will decrease obeying a slope that has

−5/3 steepness.

In possession of the knowledge of where the fine details are lost and the

cutoff point at the Nyquist frequency limit, we know exactly where and what

frequency data should be synthesized. In previous research works, to synthesize new

turbulent flows, the weapon of choice was the Fourier Transform, where a product is

computed between the given signal and a signal of 〈cos(ωt+ ϕ), sin(ωt+ ϕ)〉 basis.

The method excels at extracting frequency information from the signal, however,

since it uses a signal of periodic basis, it lacks time localization, meaning that it is
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unable to tell where the frequency components were found in the input signal.

The Wavelet Transform uses a basis of 〈{ψd,s(t):d, s∈Z}〉, different scalings and

translations of a mother wavelet signal that has finite support, therefore this method

is able to give an acceptable trade-off between time and frequency localization, thus

making multiresolution analysis possible, giving us the opportunity to examine where

exactly the extracted frequencies are found. Using the definition of the transform

[Wψf ](d, s) =
〈
f(t), ψd,s(t)

〉
=
∫ ∞
−∞

f(t)ψd,s(t) dt,

ψd,s(t) = 1√
s
ψ

(
t− d
s

)
,

supp (ψd,s(t)) <∞,

(32)

alongside with Kolmogorov’s five-thirds law, a new incompressible velocity field may

be synthesized from a low resolution result, which will now contain details of the

turbulent flows. The results are demonstrated in Figure 11.

Figure 11: The top left image shows a low resolution simulation,
and on the right is the one after the wavelet reconstruction of the
turbulent flows. Source: [13].
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4 Higher Order Advection Methods

In Section 3.2 we have discussed a first order method to compute the advection

term by tracing the velocity field back in time with a straight line by bi- or trilinear

interpolation. This technique is often referred to as first order Semi-Lagrangian

advection. As discussed in [15] and [16], a higher order approximation can be

obtained by tracing back in a curved line and using higher order interpolation

schemes. This approach requires more calculations, but is generally regarded

a worthy trade-off, since both numerical and visual results (Figure 12) show

remarkable improvement over the first order method. In this section we discuss two

unconditionally stable second order methods, the Back and Forth Error Compen-

sation and Correction Advection (BFECC) and the MacCormack Advection schemes.

Let φn denote the state of the velocity field at time step n, and A(·) the

forward, and A−1(·) the backwards advection operator. To calculate the error of an

advection method, by using the forward advection operator we get φ̂n+1 = A(φn)

and φ̂n = A−1(φ̂n+1), then the error is obtained as φ̂n − φn = 2e. We can now use

this valuable knowledge to adjust the initial setup as φ̄n = φn − e and afterwards,

the final step will be φn+1 = A(φ̄n). Both discussed methods will take advantage of

this observation.

4.1 Back and Forth Error Compensation and Correction Advection

The definition of BFECC is as follows:

1. φ̂n+1 = A(φn)

2. φ̂n = A−1(φ̂n+1)

3. φ̄n = (3φn − φ̂n)/2

4. φn+1 = A(φ̄n)

Note that this method requires three advection calculations, as opposed to one in

the standard Semi-Lagrangian method. This is the price we have to pay for a higher

order solution, though it is easy to see that increasing the resolution (k) and using

Semi-Lagrangian method would increase the computation time in the order of Θ(k2)
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Figure 12: The image shows the striking difference between a first
and a second order advection method. Source: [16].

for 2D, and Θ(k3) for 3D simulations, while the costs of higher order advection

methods only increase linearly.

4.2 MacCormack Advection

This advection scheme is defined by the series of the following steps:

1. φ̂n+1 = A(φn)

2. φ̂n = A−1(φ̂n+1)

3. φn+1 = φ̂n+1 + (φn − φ̂n)/2

It is clear that only two advection operators have to be evaluated, though extreme

values have to be taken care of by clamping the final velocity field between the

minimum and maximum values found in the initial field, φn. This advection method

is still significantly cheaper than BFECC, and as discussed in [16], it also promises

notable improvement on error values.
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5 Visualization of The Flow Field

In Section 1.3 we have shown a wide variety of applications of computational

fluid dynamics. In this section, we discuss how 2D and 3D fluid flows are visualized.

The Navier-Stokes equations give us informations on how the velocity of fluids

change over time, therefore the simplest and most intuitive approach one could come

up with would be to visualize the velocity field itself. However, we don’t know of any

kind of application which would make use of that directly. For instance, for artistic

users almost always prefer to show the fluid itself moving in time, therefore the

choice is almost always to visualize the density field, where the color of a pixel will

be proportional to the magnitude of the density field at a given region. Intuitively,

in an Eulerian simulation, it means that we have a little pool of water, in which

we inject a few drops of ink and track the trajectory of these particles as they are

advected by the velocity field.

Wind tunnel test personnel are indeed interested in the evolution of the velocity

field over time, however, displaying all of it would often show too much information.

The solution is often to sow a healthy number of particles onto the velocity field,

simulate the path of them just like artists do, but instead representing them only

with their color, speed magnitude and directional information is also often visualized.

Simulations with directional information can be viewed in Figures 4a and 6, and

color-coded speed magnitude is shown in Figures 4b, 5.

In a two-dimensional simulation, only one slab of data is visualized, there-

fore, regardless of which quantity is relevant, it can be visualized directly (Figure

13). The three-dimensional case requires special care, as if we use a grid of N3

resolution, we can imagine it as N two-dimensional slabs put on top of each other.

There is a vast amount of literature on volume rendering techniques to visualize 3D

density data, including Marc Levoy’s ray marching algorithm [17], where rays are

cast through every pixel into the volume, sampled along their way, and shaded based

on trilinear interpolation of nearby data. In order to ensure that the user only sees

what is in sight of the camera, a composition phase is also applied. The composition

step calculations are carried out with respect to the rendering equation [18] [19].
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Figure 13: Visualization of the density field in two dimensions.

6 Methods for Fluid Control

It is quite common in the world of motion picture production that a scene doesn’t

work out as well as expected. It is also not uncommon to reshoot a scene where

the actors only talk to each other, but what to do if an explosion, a gunshot, or a

collapsing building just does not deliver the artist’s intentions? There are material

costs, deadlines are always tighter than they should be, and simply enough, not

every kind of scene can be refilmed an infinite times. A building may only be blown

up once, and if something goes wrong, it is impossible to retry it in the same manner

as a dialogue scene. This is where visual artists come into the picture by using fluid

and smoke simulation software to spice up and make good scene great, or even

fix a failed attempt by adding virtual detail into previously recorded, real-life footage.

Using quality simulation software, it is possible to create a virtual scene

consisting of objects with arbitrary geometry and material attributes, and observe

how they would behave in reality. To make footage that looks convincingly real,
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Figure 14: A creative use of fluid control in the motion picture industry.
The source of this image is found in the corresponding section.

the software is expected to be based on the laws of physics. However, artists are

known to have visions and images in their heads, which they would like to stick

to. In Terminator 2: Judgment Day, Robert Patrick played the role of the famous

antagonist, the infamous T-1000, a fictional nanomorph robot made of liquid metal,

which has rapid shapeshifting abilities, being able to morph into any object. As

simulation software are by principle physically based, and since probably no one

has ever seen a puddle of liquid metal suddenly form a human shape by itself, it

would make a quite daunting, if not impossible task to simulate such phenomena. In

this case, realism is only a burden for the artists, keeping them from expressing

themselves. What if the visual artist has a definite vision of what shape the flame

should take when firing a flamethrower, and physical reality would look different? A

similar example can be viewed in Figure 145.

The simplest answer would be to drop the physically based approach and

move the objects in the simulation in a way that the artist finds pleasant. Though,

even little changes to the natural laws results in highly unconvincing footage, from

which no one would believe was real. This is quite an ambivalent problem: we

require fluids and smoke to act as the laws of nature would order them to, but we

5The image is taken from the 2012 reel video of Fusion CI Studios.
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also have our very own requirements on how they should behave. Most of the time,

artists have in vision of an image, a shape, or a physical object that the viewer

should be resembled. Mathematically speaking, there is a given density field at

t= 0 that is to converge to a target density in time, while retaining only natural

movement in the fluid domain. To make the fluid domain obey us, we change the

laws of nature temporarily, for instance by means of using an external force field. A

good intuition for this is to imagine small spoons of infinitesimal size, which we use

to stir the fluid in the chosen directions, doing it several, or even thousands of places

at once. To measure how good our job was done with the stirring, we measure the

difference between the obtained and the target density field, and also how natural

the flow of the fluid felt. The problem is that no one knows how to rigorously define

‘‘how natural a flow feels’’.

Mathematical algorithms for most problems can be objectively compared as they

have their own, well-defined error metric. Comparing them is as simple as choosing

the one that offers the best time-quality trade-off for our needs. However, there is

no metric that would define how natural a fluid flow is, we are left to judge by what

seems and what feels to be natural for us.

We have discussed a different problem in Section 3.6.3: as we compute the

velocity and pressure fields on a finite grid, there is a limit for the highest frequency

band it will be able to reconstruct, which depends on the resolution of the grid,

and is called the Nyquist-limit. Therefore, we are unable to use our spoons

arbitrarily, we are restricted to a finite band of frequency spectrum, since above the

Nyquist-limit, the informations on the external force field are not just suppressed

as the Nyquist-Shannon law suggests, but forward scatterings are more likely to

happen, meaning that larger eddies will break into two half-sized ones, causing

numerical dissipation, which will result in a very unconvincing flow footage where at

different rates, density disappears into thin air.

Long-range forces

If some part of the fluid domain has excess density, meaning that ρj , the density

at point j is higher than the target density ρtj that is defined there (given by the
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input distribution), the region will transport density by exerting force towards the

direction of its neighborhood for those who have lower density than the target. As in

physics, the exerted force weakens as the distance between the two points increases,

therefore to maintain energy conservation, some kind of falloff characteristic has to

be introduced. Based on the work of [10], this will be the definition of the long-range

force field that is responsible for arranging the density field so it can start converging

to the target on a macro level:

FL
i =

∑
j

[
ρj − ρtj

]+ rij
|rij|α

, (33)

where rij is a vector that points from grid point i to j and ||·|| is on L2(Rn). Most

physical phenomena such as light propagation, or forces like gravity and electric

force have a squared falloff with increasing distance, therefore it is not surprising

that the choice of α = 3 gives visually pleasing results. Constructing this force field

following the exact definition with O(ij) interactions is undoubtedly too demanding.

Luckily, it isn’t necessary, since as we increase the distance, every sensible choice of

α will make the force decay in an at least quadratic manner, we can safely define a

maximum distance that is to be computed from every point.

In our version we have also relaxed the evaluation of the long-range forces to regions

that have nonzero target density,

FL
i =

∑
j

[
ρj − ρtj

]+ rij
|rij|α

, ∀j : ρtj > 0, (34)

to reduce its cost to be proportional to only the volume where the target distribution

is nonzero, as opposed to the original method, where it is evaluated in the full

simulation domain.

Stability condition and short-range force design

The density change between two time instants is given by

∆ρt = ρt+1 − ρt, (35)
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and the amount of density change we would like to apply is

∆ρat = ρt(x, t)− ρ(x, t), (36)

therefore our carefully designed force field has to satisfy

∆ρt = ρt+1 − ρt ⇒ ∆ρt = λ∆ρat , (37)

where λ is a constant on [0, 1) to obtain a stable simulation.

Now a short-range force field is to be constructed to carve out the fine details of the

target distribution locally. In [10], Shi and Yu have advised that the solution of the

following global optimization problem would make a desirable field:

min
FS

t+1

c1
∑
x

(∆ρt(x)− λ∆ρat (x))2 + c2
∑
x

(DIV (x))2

−c3
∑
x

(
Ft+1(x)
||Ft+1(x)|| ·

∇ρ(x)
||∇ρ(x)||

)2

−c4
∑
x

∑
y ∈N(x)

cos(θt+1(y)− θt+1(x))

+c5
∑
x

∑
y ∈N(x)

(∣∣∣∣F S
t+1(y)

∣∣∣∣− ∣∣∣∣F S
t+1(x)

∣∣∣∣)2

(38)

where every function depends on x, the position given in space. The c1, . . . , c5

coefficients are used to assign different weight values to the terms. We attempt to give

an intuitive interpretation of the formula: the first term is responsible to ensure that

the difference between the current and the target density is minimal by maximizing

the amount of density change in excess density areas, and minimizing it at areas that

match the target density well. The velocity field has to be divergence-free throughout

the simulation and control process, therefore in the second expression, substituting

∇·ut+1(x) into DIV (x) makes a plausible choice. However, measurements show that

we obtain better results by using the long-range force field, evaluate the projection

step afterwards to keep the divergence-free property, then giving ∇ · F S
t+1(x) will

also yield correct results. The third term is the dot product between the normalized

direction vectors of the force field and the gradient of the density field. Minimizing

this is absolutely important to achieve natural looking flows: the applied forces
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will be similar to the natural flows in the fluid domain for any given time. As

cos(θt+1(x)) represents the orientation of the short-range force field in point x, the

fourth and fifth expressions are to minimize the amount of directional variance

and the magnitude of the applied short-range force field - the less intrusion, the better.

The most important attribute of the new approach would be not to use

F S
t+1 due to its computational costs, therefore omit carving out some of the fine

details, but design a different, cheaper force field that is able to mobilize large

amounts of density towards the target density while still retaining a realistic looking

flow.

Biased diffusion

In [10], the idea of a new diffusion scheme has also been raised, where diffusion,

instead of its original role of smoothing the discrepancies of the density field, would

rather help the convergence of the image through acting as a stronger distributive

force in regions of poor convergence. A slight change to the diffusion formula,

ν∇2u ⇒ ν∇2 [ρt − ρ]+ , (39)

promises improvement at carving out the fine details of the pictures. Our experience

shows that using this method excels at controlling the density towards the feature

points of the target, therefore it is a valuable tool to obtain convergence for complex

setups, but at the cost of losing some realism on the fluid flow as the diffusion process

will be conspicuously asymmetric. If target density distribution is of high variance,

using biased diffusion helps convergence substantially. If maximizing the realism of

the fluid flow is a more important requirement, then omitting this technique is the

right decision, alongside with using low-variance target distributions.

Forces after convergence

Deciding what should happen after the target density is reached is also a very

important task. While it would be a straightforward to, for example, set a very high

to ν to ‘‘freeze’’ the fluid in the convergent subdomains, the results will remain
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Figure 15: A scene made by Niklas van Bonn exhibits the use of boundary
condition computation and the depth of field effect in the rendering pass.

correct, though can not be expected to look very lifelike, making it a simple, effective,

but generally unconvincing solution.

Here we try to address the shortcomings of this approach by introducing a speedup

factor ψ, which increases the velocity of the fluid at regions where convergence is

reached with respect to an error threshold, ε. It may sound quite counterintuitive: why

speed up the fluid at regions where it already looks correct? It would be reasonable

to say that it is the exact opposite of what should happen. On a microscopic level,

freezing the fluid domain would always give the best choice: if we have only a few

points in space, freezing them by assigning a very high kinematic viscosity value

upon reaching the target distribution will ensure that they will remain in the correct

state all the time. Let’s consider a simple example on a macroscopic level, where we

have a fluid domain of significant size where the target distribution can be reached

by going through a narrow choke point. At this region, the fluid will start freezing,

therefore it will prevent any further fluid movement, making it impossible to get

density through. This scenario will not be restricted only to narrow choke points:

for almost every practical case on closed shapes, the closer we are to the state of

convergence, the higher the probability for this to happen.
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Intuitively, freezing the fluid can be associated with the ‘‘after you’re done, just stop

and rest’’ behavior, as opposed to speeding up the velocity, which would mean more

like ‘‘after you’re done, start helping others’’. As our results show, this approach will

not just preserve fluid movements after the target density is reached, but will help

increasing the speed of the convergence as well. We will use ψ in the final setting of

our new Navier-Stokes equations for fluid control in (41).

Cleaning it up

It often occurs that upon reaching convergence, excess density remains around

the outer side of the boundary of the target distribution. To clean up these details

around the boundary, an additional force field may be applied that sucks the density

back into the domain of the target distribution. The use of this cleanup force field is

entirely optional, and it would consist of vectors that are oriented from points that

contain density but have zero target density and are near the boundary to every

other point that has nonzero target density. Formally:

FC
i =

∑
j:ρt

j>0

ρj rij
||rij||α

, ∀i : ρti > 0. (40)

Depending on the target density distribution type, Neumann- or Dirichlet-type

boundary conditions may be also applied.
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The final form

Putting it all together, the proposed form of the Navier-Stokes equations for

controlling the fluid is as follows:

∂u

∂t
+ (u · ∇)u = ψ

(
−1
ρ
∇p+ ν∇2u

)
+ FL + FC + Fext + cFvc,

ψ =


1 + δ, where

∣∣ρt − ρ∣∣ < ε,

1, elsewhere,

∂u

∂n

∣∣∣
∂Ω

=


−∂u
∂t
, inside the shape,

0, outside the shape,

(41)

where c is a constant factor to control the magnitude of the control force field (and

therefore the speed of convergence) and δ is small value to keep the fluid in motion

after convergence when the actual density is equal to the target density within

error threshold ε. This technique is capable of guiding the fluid towards the target

distribution in real-time, and has the following properties:

- On an average home computer (as of 2012), both the fluid simulation and the

control algorithm can be run in parallel as they take 18 and 14 milliseconds at

most respectively on an 5122 grid with 20 Jacobi iterations, therefore it is a

real-time solution,

- It yields remarkably fast convergence speeds,

- It is to be used with target distributions of low-variance for a high measure of

realism, or,

- It is to be used on more complex, higher-variance distributions with the aid of

biased diffusion at the cost of less realism and more computational demands,

- Relying only on local data, it can be extended to simulations of any dimension

with favorable amount of computational overhead.

Out test results using Neumann-type boundary conditions without control force

fields show that it is unreasonable to expect a desirable degree of convergence (Figure
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16). This method is also unable to control any amount of density which is not

already inside the target distribution domain. The results using the new method

were rendered in real time and are shown in Figure 17, which, using roughly the

same amount of density, was able to achieve a high measure of convergence in the

same amount of time.

7 Conclusions

In this thesis, we have given a brief overview of the mathematical background

and applications of computational fluid dynamics. The main goal of the review

was twofold: to show that the rules that govern the motion of fluid and gas type

substances can be reduced to formula with three simple terms, and to use this

knowledge to build a framework that is able to solve the Navier-Stokes equations

effectively on parallel computer hardware.

We have also given a statement of the fluid control problem, where an ini-

tial state and a target distribution is given for the fluid, with the intention that

the fluid would sooner or later take the form of this distribution. A solution to

this problem is an external force field that is changing in time, describing the

forces that have to be exerted on the fluid to take a given shape. It is desirable

that this force field makes the fluid converge in a short amount of time, with the

slightly ambivalent requirement of giving a realistic flow in the meantime, even if

it is highly unlikely that a bowl of water would suddenly take a form of natural objects.

Current state-of-the-art methods use sophisticated mathematical methods

from fields such as control theory or optimization, giving impeccable results, though,

at the cost of 5 to 7 minutes of computation time per frame. We propose a new

approach to control fluids, consisting of the sum of different force fields. We take

advantage of the idea of using long-range force field and biased diffusion to obtain

coarse- and fine-scale convergence, which are both based on prior research work.

Instead of using a costly short-range force field to finish the job, we introduce

a speedup factor, which, instead of freezing the fluid, raises the velocity of the
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convergent subdomains to ensure that density transfer is possible between their

neighborhoods. In order to make the algorithm more robust to receive incoming

densities from any direction, we also introduce a new force field for cleaning up the

excess density outside the domain of the target distribution.

The proposed method introduces restrictions to the target distribution that

still retain usability for a variety of applications. The resulting method is able to

solve the fluid control problem effectively, even on average home computer systems.
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Figure 16: An imitation of the solution to the fluid control problem where no
control forces, only boundary conditions are used. The example shows that even
if the fluid is locked inside the domain of interest, it is highly unlikely that it
would suddenly flow into the shape of a star.
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Figure 17: The proposed method runs in real time, provides good coverage of
the target density, and is aware of the regions of poor convergence, which are
constantly helped out by nearby regions. Roughly the same amount of density is
used as in Figure 16.
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A Derivation of the Navier-Stokes equations

A few notes before the derivation takes place:

Dynamic or absolute viscosity gives the resistance of the fluids against stress,

denoted by µ, and has SI unit [Pa · s],

Kinematic viscosity is given as ν = µ/ρ with SI unit
[
m2 · s−1],

The material derivative gives the rate of change of a physical quantity that is

placed into a velocity field that changes in time and space. Since the particles

put inside a fluid volume will be carried with the velocity field, the directional

derivative also has to be taken into account. Therefore, this useful tool serves

as a transformation between the Eulerian and Lagrangian viewpoint and is

given by the sum of the Eulerian and convective acceleration. It is also referred

to as convective, hydrodynamic, Stokes, or total derivative.

Definition: Du
Dt

= ∂u

∂t
+ (u · ∇)u

We will use Newton’s second law [5] as a starting point of our derivation,

F = ma (42)

we first divide both sides by the volume of the region

F

V
= ma

V
(43)

on the right side we get the definition of density, substituting

F

V
= ρa (44)

where we give a as the material derivative

F

V
= ρ

Du

Dt
(45)
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which expands to
F

V
= ρ

(
∂u

∂t
+ (u · ∇)u

)
. (46)

Now we decompose the net force F into its components, pressure, diffusion and

external force field

−∇p+ µ∇2u+ ρFext = ρ

(
∂u

∂t
+ (u · ∇)u

)
, (47)

therefore dividing by ρ we get

−1
ρ
∇p+ µ∇2u

ρ
+ ρFext

ρ
= ∂u

∂t
+ (u · ∇)u. (48)

We are now able to replace the dynamic viscosity with kinematic viscosity

−1
ρ
∇p+ ν∇2u+ Fext = ∂u

∂t
+ (u · ∇)u, (49)

and as a last step, reordering for the velocity field, we get the first Navier-Stokes

equation for incompressible fluids (1),

∂u

∂t
= −(u · ∇)u− 1

ρ
∇p+ ν∇2u+ Fext. (50)
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B Statement of Helmholtz’s Theorem

Let F (r) be any continuous vector field with continuous first partial derivatives.

Then F (r) can be uniquely expressed in terms of a negative gradient of a scalar

potential field φ(r) and the curl of a vector potential a(r),

F (r) = −∇φ(r) +∇× a(r) (51)

where −∇φ(r) is the longitudinal or irrotational (∇× φ(r) = 0) and ∇× a(r) is the

transverse or solenoidal part of the vector field (∇ · a(r) = 0):

−∇φ(r) = − 1
4π∇

∫
V

∇′ · F (r′)
|r − r′|

d3r′ + 1
4π∇

∮
S

F (r′)
|r − r′|

· n d2r′

∇× a(r) = 1
4π∇×

∫
V

∇′ × F (r′)
|r − r′|

d3r′ + 1
4π∇×

∮
S

F (r′)
|r − r′|

× n d2r′

(52)

where ∇′ denotes differentiation on the primed coordinates:

∇′ = 1̂x
∂

∂x′
+ 1̂y

∂

∂y′
+ 1̂z

∂

∂z′
. (53)

If the surface S recedes to infinity and F (r) is regular at infinity,

−∇φ(r) = − 1
4π∇

∫
V

∇′ · F (r′)
|r − r′|

d3r′

∇× a(r) = 1
4π∇×

∫
V

∇′ × F (r′)
|r − r′|

d3r′

(54)

will hold, giving Helmholtz’s Theorem, named after German mathematician Hermann

von Helmholtz.
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