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Contents This is the supplementary material for the paper Separable Subsurface Scattering. It
includes:

· The present document.

· A document including the plots of the approximation kernels, compared against the actual kernel.

· The main Supplementary Video.

This document includes the following sections:

• B Detailed explanation of the Low-Rank Approximation

• C Derivation of our Pre-integrated Kernel

• D Notes on the Guided Optimization

• E Detailed description of the shader implementation

• F Parameters of the profile simulations

• G Plots of the simulated diffusion profiles

We also include additional rendering results: Figure S.2 and S.5 show a comparison of all kernel
approximations for human skin, using the head model as well as artificial ’dot’ illumination, respectively.
An additional example rendering of fruits on a plate is shown in Figure S.4. And a second head model
rendered from multiple distances is included in Figure S.8, while Figure S.6 and S.7 illustrate the benefits
of the proposed jittered sampling approach.

B Low-rank approximations

In order to accurately approximate the diffuse reflectance profile Rd(x, y) with A(x, y) =
∑N
i=1 ai(x)ai(y),

the sum of a few separable kernels, an adequate choice is required of the individual 1D functions ai. d’Eon
and colleagues [dLE07] observed that zero-mean Gaussians G are suitable for this task, i.e.,

Rd(x, y) ≈ Ag(x, y) =

N∑
i=1

wiG(x, y; τi), (S.1)

where τi denote the variances of the respective Gaussians. Due to the separability of the Gaussian kernel,
the convolution with Ag can be realized as 2N 1D convolutions. During the computation of adequate wi’s
and τi’s, d’Eon et al. employed an L1 constraint such that ‖Ag‖1 = ‖Rd‖1, which guarantees energy
conservation of the approximation Ag. Furthermore, the Gaussian kernel is spherically symmetric and
thus Ag also exhibits this feature of the original profile.

We found, however, that emphasizing the closeness criterion and forfeiting radial symmetry yields
approximations that produce the same visual quality with less convolutions, i.e., with lower complexity
(see Figure S.5). Inspired by previous methods in low-rank approximations of reflectance data [LRR04,
PvBM∗06, KM99] we employ matrix factorization of the discrete 2D diffusion profile Rd ∈ Rm×m.
Following from the Eckhart-Young theorem [EY36], a truncation of the singular value decomposition
(SVD) of Rd gives the best low-rank approximation with respect to the Frobenius norm. In more detail,
we have for the SVD of the diffusion profile

Rd = UΣV T ,

U =
(
u(1)|u(2)| . . . |u(m)

)
,

V =
(
v(1)| v(2)| . . . | v(m)

)
,

Σ = diag (σ1, σ2, . . . , σm) ,

(S.2)
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that the exact solution to the approximation problem

min
A
‖Rd −A‖F ,

subject to rank(A) = N,
(S.3)

is given by
As = UΣNV

T ,

where ΣN = diag (σ1, . . . , σN , 0, . . . , 0) .
(S.4)

The Frobenius norm follows the classical definition, i.e., ‖A‖F =
√∑m

i=1

∑m
j=1 a

2
ij =

√∑m
i=1 σ

2
i and

corresponds to the L2 norm for continuous 2D functions. Note that ΣN is a diagonal matrix and the

approximation AS can be written as a sum of separable kernels, i.e., AS =
∑N
i=1 u

(i) σi v
(i)T . While this

approach does not preserve spherical symmetry and energy conservation, it provides optimal closeness in
the sense of the L2 norm.

For low-rank approximations, i.e., N = 3 to 6, the diffusion profile is more faithfully reconstructed
and the violation of both spherical symmetry and the L1 norm are not perceivable. Energy conserva-

tion can be enforced by scaling the approximation As according to Ãs = As
‖Rd‖1
‖As‖1 . Although the new

approximation Ãs is not optimal in the L2 sense, it still provides a perceptionally better match than
the Gaussian approximation Ag with the same number of terms. Thus, our SVD-based approximation
scheme yields better performance at the same visual quality or superior visual quality at the same number
of 1D convolutions when compared to the Gaussian approximation (see Figure S.5).

C Derivation of the pre-integrated approximation

Due to the non-separability of realistic diffusion profiles, it is not possible to fully reconstruct the effect of
their convolution with 2D signals by a single separable kernel as they exhibit (close to) maximal rank. It
is, however, possible to completely reproduce a profile’s behavior on a special class of signals. Assuming
that the irradiance is additively separable, i.e., E(x, y) = E1(x)+E2(y) or, equivalently, ∂E

∂x∂y = ∂E
∂y∂x = 0,

the radiant exitance Me is given as follows:

Me(x, y) =

∫∫
E(x′, y′)Rd(x− x′, y − y′) dx′dy′

=

∫∫
(E1(x′) + E2(y′))Rd(x− x′, y − y′) dx′dy′

=

∫
E1(x′)

∫
Rd(x− x′, y − y′) dy′︸ ︷︷ ︸

ap(x−x′)

dx′

+

∫
E2(y′)

∫
Rd(x− x′, y − y′) dx′︸ ︷︷ ︸

ap(y−y′)

dy′

=

∫
E1(x′) aP (x− x′) 1

‖ap‖1

∫
ap(y − y′) dy′︸ ︷︷ ︸
=1

dx′

+

∫
E2(y′) aP (y − y′)

︷ ︸︸ ︷
1

‖ap‖1

∫
ap(x− x′) dx′ dy′

=

∫∫
E(x′, y′)

1

‖aP ‖1
ap(x− x′)ap(y − y′) dx′dy′,

(S.5)

where ap denotes the pre-integrated one-dimensional approximation of Rd along a coordinate axis. Due
to radial symmetry of Rd, we have ap(x) = ap(y), where ‖ap‖1 = ‖Rd‖1 by definition. Hence, we define
the pre-integrated approximation Ap of the diffusion profile as

Ap(x, y) =
1

‖Rd‖1
ap(x)ap(y). (S.6)

Note that Ap reproduces the exact 2D convolution with Rd in the presence of additively separable
irradiance signals, such as linear shadow boundaries of arbitrary orientation or arbitrary axis-aligned 1D
functions.
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D Notes on the guided rank-1 approximations

Motivated by the high quality of the pre-integrated approximation, we tried to reproduce this behavior as
part of the guided approximation framework. The goal with this approach is to allow the user to emphasize
either near or far scattering by manipulating only a single parameter. For a default parameter, the output
should provide a ‘neutral’ approximation close to the analytically derived pre-integrated approximation.

Stating the associated optimization problem as

as = argmin
a

∫
R2

Γ(x, y)
(
Rd(x, y)− a(x)a(y)

)2
dx dy

subject to ‖Rd‖1 = ‖a‖21,
(S.7)

we derive a separable approximation As(x, y) = as(x)as(y) to the diffuse reflectance profile Rd(x, y). The
guide function Γ(x, y) provides the means to alter the result to provide the desired artistic effect. Since
an arbitrary guide function would exhibit a huge amount of degrees of freedom, we aim to restrict its
shape to a one-dimensional subspace that serves the intended effect of pronouncing either near or far
scattering.

As a starting point we tried to determine the guide function that would reproduce the pre-integrated
approximation, i.e., we determined a guide function Γp(x, y) such that

ap = argmin
a

∫
R2

Γp(x, y)
(
Rd(x, y)− a(x)a(y)

)2
dx dy

subject to ‖Rd‖1 = ‖a‖21,
(S.8)

where ap is the pre-integrated approximation of the previous Section C. As can be seen in Figure S.1a,
such a guide function exhibits a rather complicated structure. To reduce the associated complexity of
the guide function down to a single parameter, we defined a parametrized guide function

Γ(x, y; k) =
(
x2 + y2

)k/2
(1− e−bx

2

)(1− e−by
2

). (S.9)

The radially symmetric polynomial term with exponent k serves as external parameter to either emphasize
near or far scattering. A depiction of this function can be found in Figure S.1b for k = 1.55. Note that
this polynomial term reproduces the behavior of Γp(x, y) on the diagonals. To reproduce the shape of Γp
along the coordinate axis we add ‘suppression’ functions in the form of 1−e−bx2

and 1−e−by2 that cause
the guide function to vanish close to the coordinate axis. We chose b = 50 (assuming that x, y ∈ [−1, 1])
and the whole framework is insensitive to moderate changes of this parameter. Varying the parameter k
in the range from 0 to 4 allows the user to generate a separable approximation (as a result of Equation S.7)
that emphasize near scattering k = 0 or far scattering k = 4. Note that no appreciable visual effects
are observable beyond k = 4. We have used sequential quadratic programming to minimize Equation
S.7. To avoid taking on a high-dimensional optimization problem immediately, we solve Equation S.7 for
low-resolution versions of the final kernel. Each optimization is then initialized with an interpolation of
the solution to the next-lower resolution.

E Shader Implemention Details

As our technique works in screen-space, the size of the kernel is a function of the projected surface area
in the pixel, which depends on depth and surface orientation. This area is typically specified in world-
space units instead of pixels, making the definition of the kernel size more intuitive for artists. When
using a discretized kernel, the effect of the surface orientation can be taken into account by using ad-hoc
correction factors [JSG09].

In contrast, using the simplified two-Gaussian artist-friendly model Am allows us to work on real-world
distances: we transform the depth of the pixel being evaluated and of each sample to world-space, and
then calculate the distance d between them. This distance is used to apply the profile on the fly, yielding
more accurate results than using derivatives or ad-hoc correction factors. However, this approach has two
problems: (1) we cannot accurately bake the kernel weights by evaluating the area covered by each sample
(so we can only evaluate the kernel in the sample position), and (2) the number slots per sample used by
the GPU (as generated by DirectX 11 fxc) increases from 16 in a simple ad-hoc correction technique to
28, almost halving the performance, making it useless in production scenarios. The latter problem is due
to: a) converting from depth and pixel position to world-space require a few additional ALU instructions;
b) evaluating a 2-Gaussian RGB profile requires 6 exp instructions, which are extremely costly to execute
even on modern GPUs.
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(a) Γp(x, y) (b) Γ(x, y; 1.55)

Figure S.1: Comparison of the guide function that reproduces the pre-integrated approximation (left)
and our parametrized version that provides artistic control (right).

We solve this problem following an approach similar to the one proposed by Mikkelsen [Mik10], by
splitting the 1D profile application on 3D distances d to 2D distances dxy with an accurate depth dz
correction factor. This transforms the evaluation of the kernel as:

am

(√
d2xy + d2z

)
= wG

(√
d2xy + d2z, τnear

)
+ (1− w)G

(√
d2xy + d2z, τfar

)
= w e

−d2z
2τnear G(dxy, τnear) + (1− w) e

−d2z
2τfar G(dxy, τfar)

≈ e
−d2z

2τmax

(
wG(dxy, τnear) + (1− w)G(dxy, τfar)

)
= e

−d2z
2τmax a′m(dxy),

where τmax = max(τnear, τfar). Note that we are making the approximation of taking the maximum
variance of the Gaussians, which simplifies the profile application to an accurate depth correction, versus
the ad-hoc corrections used in e.g. [JSG09]. This allows to (1) pre-compute accurate weights for a′m(dxy)
using area integration, and reduce the number of instructions to 16 by: a) reducing the number of exp

from 6 to a single one; b) avoiding the conversion to world-space by directly working with depths; c)
applying typical low-level optimizations [Per14].

F Profile Simulation (MCML)

The diffuse reflectance profiles have been simulated using MCML [WJZ95] and the material parameters
used for our simulations were taken from an earlier work [JMLH01]. For each material the RGB channels
were simulated separately. Aside from the material properties, each channel used the same parameters
specified as follows:

No. Photons: 107

Grid spacing: the minimum mean free path divided by 20 (dr =
min(MFPrgb)

20 ).

No. of grid elements: 32 times the maximum mean free path divided by dr (nr = d 32∗max(MFPrgb)
dr

e).

Thickness: 107 cm (quasi-infinite).

The mean free path is computed as 1
σ′t

= 1
σa+σ′s

. As we model isotropic scattering (g = 0), the reduced

scattering coefficient is trivial, i.e. σ′s = σs. For the use with MCML all parameters are also converted to
cm, cm−1 or cm−2 respectively. MCML simulates cylindrically symmetric tissue models, and outputs the
diffuse reflectance profile as an 1D function, Rd(r). Detailed material parameters, plots of the simulated
profiles as well as the derived radially symmetric 2D profiles are included in Section G.
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Figure S.2: Comparison of the different techniques proposed with d’Eon’s method [dLE07] with six
Gaussians, and the ground truth (actual 2D kernel). Note that our separable approximations lead to
similar quality results with just two 1D convolutions, as opposed to the twelve needed by the sum of
Gaussians approach. Note that all separable rank-1 kernels are highlighted with green.

G Simulation Parameters and Results

This section includes the properties of each measured material, simulated 1D profile plots and derived 2D
profiles for each material. The 1D profiles shown in the first two subplots are weighted by 2πr because
the magnitude of the profile at a certain r value represents the reflectance on a complete circle of the
radially symmetric 2D profile, whose area increases as r is increasing. It is worth noting that although all
three channels were simulated up to the same maximum radius, the 1D profile plot may falsely suggest
otherwise. In the case of the logarithmic scale plots, all profile values near machine precision are omitted
by the plot function. In the MFP plots, each channel radius is scaled by the their respective MFP values,
and therefore each channel has different support on the x axis. Additionally, all MFP plots show the
unweighed profiles and the 2D plots visualize only the most significant center region.
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Figure S.3: Our results reveal that a SVD-based low-rank approximations scale better with the number
of convolutions than the state of the art [dLE07], however, it still yields a coarse approximation of the
true kernel in the separable case. Note that all separable rank-1 kernels are highlighted with green. The
pre-integrated kernel is exact for axis-aligned functions, such as this example. The guided optimization
with k = 2 provides a comparably good fit while the k = 0 case captures the fine details near the boundary
at the expense of the far-range scattering quality. A manual approximation using our artist-friendly model
provides a rich design space and in this case, perceptual similarity to the ground truth was the modeling
objective. This is illustrated by two approximations, where for the first (close fit), perceptual similarity
to the ground truth was the modeling objective, while the second (production) was tweaked by an artist
for production purposes. Note that the image is best viewed in the electronic version of the paper.
Additional 2D visualizations of the different kernels are provided in the second supplementary document,
where we also demonstrate that the radial asymmetry of the SVD-based kernels vanishes rapidly with
increasing rank.

6



Figure S.4: Real-time results for apple. The insets show (from top to bottom) input irradiance, d’Eon et
al. [dLE07] with 1 Gaussian, our analytic kernel pre-integration technique and the ground truth. Both
d’Eon’s with one Gaussian and ours are run with the same number of convolutions, thereby yielding
similar execution times.

Figure S.5: Additional results reveal the inherent shape and quality of the separable and low-rank ap-
proximations on a white disk irradiance signal. Please note that, although, the radial asymmetry of our
separable kernels, and the gradient-color differences of the manual approximations, are noticeable in case
of the artificial ’dot’ illumination, it is less noticeable in case of our practical rendering examples.
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(a) (b) 13 (Non-Jitt.) (c) 65 (Non-Jitt.) (d) 13 (Jittered)

Figure S.6: In harsh lighting conditions, extreme close-ups may reveal artifacts even in the presence of
importance sampling. a Initial image; b Importance sampling with 13 samples shows banding artifacts
(please zoom in in the digital version for a better view); d Up 65 samples are needed to eliminate visible
banding; c Our jittering approach also eliminates banding while keeping the sample count low (this image
is best viewed in the digital version).

(a) Without jittered sampling (b) With jittered sampling (33%) (c) Ground truth

Figure S.7: This figure illustrates that our jittered sampling scheme is able to remove banding artifacts
stemming from the radial asymmetry of our separable kernels. The images represent our manual approx-
imation (close fit) of human skin, which shows visible artifacts if no jittering is used (a), but is able to
approximate the ground truth (b) in a visually plausible way if 33% of the samples are jittered (c).
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Figure S.8: Typical cases found in games, for which the technique is measured.
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G.1 Apple

Apple σa (mm−1) [RGB] σs (mm−1) [RGB] η g Thickness (cm)
Layer 1 [0.0030, 0.0034, 0.0460] [2.2900, 2.3900, 1.9700] 1.3000 0.0000 107

Figure S.9: Apple - Scattering properties
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Figure S.10: Apple - Simulation
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G.2 Chicken1

Chicken1 σa (mm−1) [RGB] σs (mm−1) [RGB] η g Thickness (cm)
Layer 1 [0.0150, 0.0770, 0.1900] [0.1500, 0.2100, 0.3800] 1.3000 0.0000 107

Figure S.11: Chicken1 - Scattering properties
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Figure S.12: Chicken1 - Simulation
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G.3 Chicken2

Chicken2 σa (mm−1) [RGB] σs (mm−1) [RGB] η g Thickness (cm)
Layer 1 [0.0180, 0.0880, 0.2000] [0.1900, 0.2500, 0.3200] 1.3000 0.0000 107

Figure S.13: Chicken2 - Scattering properties
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Figure S.14: Chicken2 - Simulation
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G.4 Cream

Cream σa (mm−1) [RGB] σs (mm−1) [RGB] η g Thickness (cm)
Layer 1 [0.0002, 0.0028, 0.0163] [7.3800, 5.4700, 3.1500] 1.3000 0.0000 107

Figure S.15: Cream - Scattering properties
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Figure S.16: Cream - Simulation
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G.5 Ketchup

Ketchup σa (mm−1) [RGB] σs (mm−1) [RGB] η g Thickness (cm)
Layer 1 [0.0610, 0.9700, 1.4500] [0.1800, 0.0700, 0.0300] 1.3000 0.0000 107

Figure S.17: Ketchup - Scattering properties
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Figure S.18: Ketchup - Simulation
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G.6 Marble

Marble σa (mm−1) [RGB] σs (mm−1) [RGB] η g Thickness (cm)
Layer 1 [0.0021, 0.0041, 0.0071] [2.1900, 2.6200, 3.0000] 1.5000 0.0000 107

Figure S.19: Marble - Scattering properties
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Figure S.20: Marble - Simulation
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G.7 Potato

Potato σa (mm−1) [RGB] σs (mm−1) [RGB] η g Thickness (cm)
Layer 1 [0.0024, 0.0090, 0.1200] [0.6800, 0.7000, 0.5500] 1.3000 0.0000 107

Figure S.21: Potato - Scattering properties
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Figure S.22: Potato - Simulation
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G.8 Skimmilk

Skimmilk σa (mm−1) [RGB] σs (mm−1) [RGB] η g Thickness (cm)
Layer 1 [0.0014, 0.0025, 0.0142] [0.7000, 1.2200, 1.9000] 1.3000 0.0000 107

Figure S.23: Skimmilk - Scattering properties
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Figure S.24: Skimmilk - Simulation
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G.9 Skin1

Skin1 σa (mm−1) [RGB] σs (mm−1) [RGB] η g Thickness (cm)
Layer 1 [0.0320, 0.1700, 0.4800] [0.7400, 0.8800, 1.0100] 1.3000 0.0000 107

Figure S.25: Skin1 - Scattering properties
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Figure S.26: Skin1 - Simulation

18



G.10 Skin2

Skin2 σa (mm−1) [RGB] σs (mm−1) [RGB] η g Thickness (cm)
Layer 1 [0.0130, 0.0700, 0.1450] [1.0900, 1.5900, 1.7900] 1.3000 0.0000 107

Figure S.27: Skin2 - Scattering properties
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Figure S.28: Skin2 - Simulation
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G.11 Wholemilk

Wholemilk σa (mm−1) [RGB] σs (mm−1) [RGB] η g Thickness (cm)
Layer 1 [0.0011, 0.0024, 0.0140] [2.5500, 3.2100, 3.7700] 1.3000 0.0000 107

Figure S.29: Wholemilk - Scattering properties
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Figure S.30: Wholemilk - Simulation
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