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Figure 1: Photon mapping is a versatile biased rendering algorithm which can be used in conjunction of path tracing in form of hybrid
algorithms to help rendering caustics and global illumination. Another strength of photon mapping is the high quality of quick preview
images. All images were rendered with Mitsuba Renderer. The first three images are the results of standard, progressive and stochastic
progressive photon mapping with 250.000 photons. The second three images are path tracing reference images rendered with bidirectional
path tracing (16 spp), energy retribution path tracing (2 spp, 10 mutations per pixel) and path space metropolis light transport (32 spp). All
images were rendered in about 8 seconds and in 512x512 pixel resolution.

Abstract

Light transport simulations are the key to physical correct render-
ing which allows photorealism by use of non-artistic but mathemat-
ically provable techniques. Several different state-of-the-art biased
light transport algorithms are available and methods to improve ef-
ficiency and scalability are researched. Efficient global illumination
algorithms for offline rendering are available both on CPU and GPU
and real time solutions are also actively researched topics in the sci-
entific community. Those algorithms often include techniques for
temporal and spatial coherence, subsurface scattering and partic-
ipating media. This state of the art report offers an introduction
about bias and consistency to help understand the difference be-
tween widely used biased and unbiased rendering algorithms. Dif-
ferent photon mapping algorithms were used to render compari-
son images to visualize the strengths and weaknesses of the tech-
nique using the common torus scene which includes many difficult
specular-diffuse-specular light paths.

Several recent extensions and improvements for both many-light
rendering as well as recent accomplishments in the field of photon
mapping are presented. A brief overview over various lightcut algo-
rithms for efficient light clustering along with a recently published
automatic light minimization technique is also provided. This re-
port provides a survey over recent publications in these topics as
well as ideas for possible further research directions.
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1 Introduction

Photorealism in computer graphics is a common requirement and
physical based rendering (PBR) allows this degree of correctness
by simulation of light transport. This is why the term light trans-
port is used synonymously for PBR. The goal is to create results
that are indistinguishable from reality, which is especially impor-
tant for computer generated imagery (CGI) in films where the final
images can contain both real-world camera captures alongside CGI.
PBR also allows the simulation of real-world lighting which is im-
portant for artists, architects, industry, product design and many
other fields.

Several different physically based algorithms have been developed
e.g. (in no particular order) Metropolis light transport introduced
by Veach & Guibas [1997], distributed ray tracing by Cook [1984],
path tracing by Kajiya [1986], bidirectional path tracing by Lafor-
tune & Willems [1993], photon mapping by Jensen [2001] and
building upon it progressive photon mapping by Hachisuka, Ogaki
& Jensen [2008] and further stochastic progressive photon mapping
by Hachisuka & Jensen [2009].

A general model for light transport is given by the rendering equa-
tion [Kajiya 1986]. This equation describes the amount of radiance
leaving a point x into the direction ω . PBR algorithms essentially
offer different ways to numerically solve this integral. The com-
monly used representation of the rendering equation is

L(x,ω) = Le(x,ω)+
∫

Ω

fr(x,ω ′,ω)L(x,ω ′)(ω ′ ·n)dω
′, (1)



where the radiance emitted by the point itself is Le(x,ω). ω is the
outgoing and ω ′ the incoming direction. L(x,ω ′) is the amount of
radiance incoming at point x from direction ω ′. Ω is the hemi-
sphere of all possible incoming directions ω ′. The bidirectional re-
flectance distribution function (BRDF) fr(x,ω ′,ω) defines the frac-
tion of the radiance incoming from direction ω ′ that is reflected into
direction ω at point x. The bidirectional transmittance distribution
function (BDTF) describes the amount of light transmitted through
the object into direction ω at any point x for any incoming direc-
tion ω ′. The sum of both functions is referred to as the bidirectional
scattering distribution function (BSDF). For brevity, in our notation
we only refer to the BRDF in all equations as it is commonly done
in literature.

The rendering equation generalizes the reflected radiance at any
point x. Usually, time and spatial coherence effects like motion
blur, depth of field and others effects like subsurface scattering or
spectral dispersion are important as well. Most state-of-the-art ren-
dering algorithms are extensible to deal with those image features
but light paths like specular-diffuse-specular (SDS) paths are very
difficult to sample and some algorithms might not be able to take
them into consideration. Light transport algorithms are also often
not categorized and compared by image features but are classified
by consistency and bias. Depending on the application one might
also be interested in the general speed of convergence of specific
light paths, the type of noise and image artefacts and memory re-
quirements and a similar a categorization to this is given by Dachs-
bacher et al. [2014, p. 15] for many-light rendering methods.

Hachisuka [2013] explained bias and consistency in the context of
Monte Carlo Integration. He also pointed out five common miscon-
ceptions about bias in light transport. One important misconception
of those is that unbiased means more accurate. This is not necessar-
ily true as one specific run of a biased algorithm could have a better
result than one specific run of an unbiased algorithm. In the field of
offline light transport users often require physical correctness and
therefore require consistent algorithms. Bias can be accepted under
some circumstances, and it usually yields a tradeoff between speed
of convergence and bias. Unbiasedness does not mean that the al-
gorithm converges to the correct solution and neither that it is more
accurate that a biased one. In cases bias is accepted it should be
as low as possible as we want the difference between the expected
image and the ground truth to be minimal. We later provide the
definition for both terms in this manuscript.

Even in theoretically unbiased algorithms it might be worth to ac-
cept bias. One example would be to naı̈vely shoot more rays into the
direction of specular objects to improve the convergence of difficult,
slowly converging light paths. Renderers which use multiple ren-
dering algorithms in one rendering technique are called hybrid ren-
derers. Often a biased algorithm like photon mapping is added to an
unbiased path tracing framework to combine the best of both meth-
ods. Common hybrid global illumination renderers like mental ray,
v-ray, light tracer are listed by Chaos Group [2014]. Other biased
rendering algorithms would be irradiance caching by Ward [1994]
or instant radiosity by Keller [1997]. An overview over radiance
caching and its derivatives was given by Jarosz [2008, pp. 23–44]
along with an introduction about Monte Carlo integration and den-
sity estimation.

This paper focuses on photon mapping variants and virtual point
light based methods like lightcuts in the field of offline rendering.
We have chosen photon mapping and many-light rendering algo-
rithms as they are the recently most referred to state-of-the-art algo-
rithms which are both biased and allow physically based rendering.
Other important global illumination algorithms based on light trans-
port matrices are matrix row-column sampling by Hašan [2007] and
LightSlice by Ou and Pellacini [2011]. Dachsbacher et al. [2014]

gave an overview over the latter two methods.

The second part of this paper focuses on light minimization tech-
niques. The number of light sources usually directly affects the ren-
dering time. Real world scenes with hundreds of light sources are
not uncommon. For such huge globally illuminated scenes the film
industry often uses supercomputers as presented by Wong []. Ef-
ficient algorithms for a large amount of light sources are therefore
a requirement. Less light sources result in faster execution times
[Podaras 2014]. Light clustering techniques for many-light ren-
dering had been used in lightcuts, multidimensional lightcuts and
bidirectional lightcuts by Walter et al. [2005; 2006; 2012]. Hašan et
al. [2009] proposed an algorithm using virtual spherical point lights
in many-light renderings with glossy surfaces. A GPU based out-
of-core approach for many-light rendering was proposed by Wang
et al. [2013].

2 Bias and Consistency

To understand the difference between biased and unbiased render-
ing algorithms it is important to understand the concept of bias and
consistency in general.

We use the explanations of bias and consistency in context of Monte
Carlo integration by Hachisuka [2013] and Crane [2006]. Any es-
timator fulfilling Equation (2) no matter how many samples are
drawn is an unbiased estimator. This means that the error is ex-
pected to be zero:

E[ fN(X)]− I = 0, (2)

where fN(X) is the Monte Carlo estimator for Equation (1). Any
consistent estimator needs to fulfill Equation (3). This equation
describes that the probability for the estimation error to be zero is
equal to 1, i.e.,

limN→inf

[∫
Ω

f (x)dx− fN(X)

]
= 0. (3)

Figure 2: The convergence of the estimate of unbiased, biased, con-
sistent and inconsistent algorithms. Dark grey represents a biased
but consistent algorithm, which error is not monotonically decreas-
ing but the error converges to zero as the estimate converges to the
correct result. Light grey represents an unbiased and consistent al-
gorithm, which error is monotonically decreasing and the algorithm
also converges to the correct result. Black represents an unbiased
but inconsistent algorithm, which error is monotonically decreas-
ing but the algorithm does not converge to the correct result. As the
algorithm does not increase a difference ε between the converged
and the correct result remains. The image is taken from Keenan
Crane c© [2006].

The term consistency refers to the convergence of the algorithm
to the correct result and a state-of-the-art algorithm in physically
based rendering therefore is expected to be consistent. Consistency



analysis is a limit analysis of the algorithm and does not necessar-
ily reflect the result achievable with memory, runtime and precision
available. Under those restrictions and limited by modeling accu-
racy the result of an consistent algorithm still can be far from what
can be seen with our own eyes. In an inconsistent algorithm the re-
maining error ε after convergence is still large enough to be visible.
This error ε reflects all missed light paths and physical properties,
e.g. missing reflections, subsurface scattering or missing partici-
pating media. A consistent algorithm does in fulfill the consistency
definition in Equation 3 from the view of a mathematical analysis.

The monotonically decreasing error in unbiased algorithms allows
to combine samples to improve the result. The combination of two
unbiased samples is therefore more accurate than each single sam-
ple itself. This makes parallel rendering on completely independent
machines possible. The bias in photon mapping is introduced by
being limited in the number of stored photons. In implementations
where density estimations are interpolated the interpolation does
introduce another source of bias.

3 Photon Mapping

Algorithm 1 photon mapping
1: while photon map not full do . photon tracing
2: for all lights l do
3: trace photon p along ray
4: if p hits surface s then
5: if s is diffuse then
6: store p in global photon map
7: else
8: reflect, transmit, absorb
9: weight flux

10: according to Russian roulette
11: end if
12: end if
13: end for
14: for all pixel p do . rendering
15: trace ray from p into view direction until surface is hit
16: estimate density using N nearest photons
17: end for
18: end while

Photon Mapping is a two-pass global illumination rendering algo-
rithm by Jensen and Christensen [1995]. In the standard implemen-
tation photon mapping is a biased and consistent algorithm. Al-
gorithm 3 shows an high level description of the photon mapping
algorithm. However, an in-depth explanation of photon mapping
is given by Jensen [2002, pp. 15–58]. He describes photon emis-
sion, storage, rendering photon maps and the radiance estimates for
photon mapping in detail as well as give an example implementa-
tion in c++. The strengths of photon mapping are the rendering
of caustics, diffuse interreflection and participating media in com-
plex scenes but its weaknesses are glossy surfaces and specular re-
flections which are usually rendered with distributed path tracing
methods. The basic implementation uses a k-d tree.

In the first pass, a large number of photons is emitted from all light
sources and their path through the scene is traced. A visualization
of the photon tracing is given in Figure 3. Photons are stored on
the first diffuse surface they hit. Each stored photon contains its
position, power, phi-theta compressed incoming direction and a kd-
tree flag. Photons are stored in one of several photon maps: the
global photon map, the caustic photon map, and the volume photon
map. Russian roulette depending on the BSDF is used to determine

whether the photon is reflected, transmitted or stored. A photon can
be stored once, multiple times or not at all if it is discarded.

The required number of shadow rays for direct illumination has a
huge impact on global illumination algorithms. In algorithms where
no shadow rays are used occlusion has to be computed as well and
it usually is computation wise costly. To decrease the amount of
shadow rays for photon mapping it is possible to use shadow pho-
tons to determine which areas are lit and which are in shadow. This
approach can miss small occluders not hit by any shadow photons
which is especially problematic when the overall number of pho-
tons is low. When photons hit a diffuse surface a shadow photon is
traced along the original ray and this shadow photon is stored on all
surfaces it hits. When during the rendering phase no shadow pho-
ton is found among the k nearest photons the point is considered lit
and no shadow ray is shot.

Emission

Figure 3: Photons are fired from each light source. They are stored
on diffuse hit materials only as the probability to find a photon with
matching incoming direction on a specular surface is zero. Their
path through the scene is traced and photons are stored stochas-
tically in one of the photon maps. Each photon carries a part of
the light source radiant flux. Shadow photons are traced through
opaque object to reduce the amount of shadow rays required during
the rendering phase. The image was taken from Jensen c© [2002].

All types of light sources are possible and the distribution of pho-
ton emission should reflect the intensities of all light sources. Point
lights emit photons uniformly in all directions and most area lights
emit photons accordingly to a photon emission function f (ω) de-
pendent on the outgoing direction ω . All photons should carry
equal flux to avoid wasting computation time with photons of low
contribution.

This is very costly for sparse scenes as many photons will not hit
any objects. Jensen [2002, pp. 15–58] suggests the use of projec-
tion maps to overcome this problem. The type of projection map
has to be chosen according to the type of the light source, e.g. a
point light source requires spherical projection, while a directional
light requires a planar projection. A bounding volume for objects
can be used for faster generation of the projection map but a trade-
off between generation cost of the projection map and the cost for
shooting wasted photons has to be made. After the generation of the
projection map photons are shot only into active cells of the projec-
tion map. When projection maps are used it is required to scale the
flux per photon accordingly as in,

Pphoton =
Plight

ne

cells with object
total number of cells

, (4)



where Pphoton is the scaled flux. The first fraction in Equation 4
is the ratio of light source power to the total number of emitted
photons. The second fraction is the ratio between active and total
cells in the projection map. The use of projection maps is especially
helpful for the separate generation of the caustic photon map as the
distribution of specular objects is often very sparse.

The path of photons is usually terminated by Russian roulette. Rus-
sian roulette does help to keep the number of photons for each
bounce similar as more photons are generated for reflection and
transmission and an equal number of photons per path length is
wanted. The decreased probability of survival on each interaction
accounts for the increased number of photons. The drawback of
Russian roulette is that it does increase the variance of the final im-
age. When a sufficient number of photons are used, the output will
converge to the correct result.

Storage

Photons are only stored on diffuse surfaces as the probability of
finding a matching photon of incoming direction on a specular sur-
face is zero and specular reflections are therefore rendered using
distribution ray tracing. When a photon hits a specular material it
will be stored in both the global as well as the caustic map on its
first diffuse interaction.

For all diffuse paths the information about the photon-object inter-
action is stored in a global photon map which is a flat array during
the tracing pass. For efficiency purposes the array is reorganized
into a balanced k-d tree before the rendering phase. To include par-
ticipating media ray marching and a volume photon map for photon-
media interactions can be used..

Photon mapping differentiates between low resolution diffuse light-
ing and high resolution caustics. Photons reflected at a specular
surface at least once are stored in a separate caustic map. The caus-
tic map requires a higher density to avoid blurred edges in caus-
tics. The density can be increased by using a projection map and
shooting photons more likely into the direction of specular objects.
Figure 3 shows two rendered images where the photon map is di-
rectly visualized and 100 and 500 photons are used in the radiance
estimate.

A balanced k-d tree is used for storage. It is required to locate
the k nearest photons very often and therefore this operation has to
be optimized well. Jensen [2002] proposes a balancing algorithm
similar to balancing algorithms for binary trees as well as how to
compress the required memory for photon storage by precomputing
phi-theta-encodings for incoming angles. Grid based photon maps
were used by Purcell et al. [2003] and stochastic spatial hashing has
been proven to be very efficient for progressive photon mapping by
Hachisuka and Jensen [2010]. Pedersen [2013] has evaluated k-d
tree based, grid-based, and stochastic hashing methods for progres-
sive photon mapping on the CPU and was able to show how the
latter are significantly faster than the k-d tree approach.

Rendering

In the second pass the stored photons are used to illuminate the
scene. The radiance estimate for a point x is defined as in,

Lr(x,
−→
ω )≈ 1

πr2

N

∑
p=1

fr(x,
−→
ωp,
−→
ω )∆Φp(x,

−→
ωp). (5)

Figure 4: The results of a direct visualization from
Jensen’s c© [2002] rendering of the Cornell box. For the left
image used 100 and for the right image 500 photons were used
in the radiance estimate. The false color bleeding is the result of
using a sphere for locating the photons. Using a disc or an ellipsoid
can decrease this problem.

Equation (5) estimates the radiance of N photons inside a sphere of
radius r at a point x. This assumes that the surface is locally flat.
Each photon carries the flux ∆Φp(x,

−→
ωp) and its contribution is cal-

culated using the BRDF fr(x,
−→
ωp,
−→
ω ) of the material hit. It would

be possible to use other volumes than a sphere for the radiance esti-
mation, but the area of an intersection between a plane and a sphere
can be computed efficiently.

There are two ways to render photon maps. One possibility is to di-
rectly render the photon map as in Figure 3. This would be a global
illumination algorithm but it is very inefficient. The other possi-
bility is to use photon maps in hybrid algorithms. This means that
not the whole rendering equation is estimated using photon maps.
The integral is split and some parts are estimated with some other
algorithm like distributed ray tracing.

Jensen [2002] splits the rendering equation into four part as follows,

Lr(x,ω) =
∫

Ω

fr(x,ω ′,ω)Li(x,ω ′)cos(θi)dω
′
i

=
∫

Ω

fr(x,ω ′,ω)Li,l(x,ω
′)cos(θi)dω

′
i+∫

Ω

fr,s(x,ω ′,ω)(Li,c(x,ω ′)+Lid (x,ω
′))cos(θi)dω

′
i+∫

Ω

fr,d(x,ω
′,ω)Li,c(x,ω ′)cos(θi)dω

′
i+∫

Ω

fr,d(x,ω
′,ω)Li,d(x,ω

′)cos(θi)dω
′
i .

(6)

The first integral in Equation (6) represents direct illumination, the
second specular and glossy reflections, the third caustics and the
fourth integral represents the diffuse indirect illumination. The in-
tegrand is the product of BRDF, incoming light, and a geometry
term. Diffuse illumination and caustics are numerically integrated
with photon map estimation. Monte Carlo ray tracing with im-
portance sampling and the irradiance gradient caching scheme by
Ward [1988] are used for specular and glossy reflections. Shadow
rays are shot to determine the light source occlusion for direct light-
ing.

A hybrid algorithm is used because the required number of photons
for good estimation of specular and glossy features is impractical.
Final gathering is used to evaluate the multiple diffuse illumination.
The photon map can help to find regions of interest and shoot more
rays into directions where there are more photons. Keller [2000]



Figure 5: Importance sampling can be used for photon mapping to
improve indirect illumination by shooting more rays according to
the BRDFs. The image was taken from Jensen c© [2002].

has published efficient importance sampling techniques for photon
mapping and Suykens [2002] discusses visual importance and an
estimation of the error bound. Visual importance can be used to
estimate the required density in the photon map in each region of
the scene and can be used in both the emission as well as the storage
step.

A final gathering step is used to evaluate the diffuse interreflec-
tion. Final gather is a ray tracing scheme where samples over the
hemisphere of each point are shot and photons or radiosity caches
are used for the density estimation at each hit point of those rays.
Naive final gather requires many rays for high quality renderings
and Kato [2002, pp. 159–191] presents final gather techniques
implemented in the distributed parallel renderer Kilauea. Among
those he discusses sparse final gathering, hit point reprojection,
caching final gather ray information, partial final gather re-shooting
and in case of short distance final gather hit points a second pass fi-
nal gather algorithm.

Problems

Figure 6: As the k nearest photons are selected even photons which
are unable to illuminate a point x are included in the estimate. This
leads to the wrong estimate. The left image shows light leakage
from photons behind the wall. The right image shows how energy
leakage can be reduced by storing photons in the global photon map
on the second diffuse intersection instead of the first. This idea
and both images were taken from the Metropolis photon sampling
publication by Fan c© [2005].

Figure 7: Both images visualize cases of light leakage. Photons
which can not contribute to the point x are included in the estima-
tion. The top case can be solved by storing the surface normal for
each photon to differentiate the two surfaces. However, this does
not help in the bottom case where the photons lie on surfaces with
the same normal and are divided by a thin occluder. The images
were taken from Kato c© [2002, p 135].

The main problems of photon mapping are wrong density estimates
because of light leakage and that the number of photons one can
shoot and store is limited. Light leakage is the inclusion of photons
into the estimate which can not contribute to the density because
of occlusion. An example is given in Figure 3. Photons behind
the wall are added to the density estimate as they are close to the
point x on the visible side of the wall. One possibility to reduce
this problem is the deformation of the sphere into an ellipsoid to
include less wrong photons. Usually a disc instead of a volume is
used to locate the photons but this does still include wrong photons.
Other volumes and projected areas are possible but computation
wise more expensive so a tradeoff between search cost and error
has to be made. Another improvement is to store the surface normal
which helps to identify photons on the opposite site but it does not
help when they lie on the same surface and are divided by such a
wall. This two cases were visualized by Kato [2002, pp. 122–193]
as in Figure 3.

Another problem with photon mapping is that the density estima-
tion can lead to blurry image features. This can be preferred over
high frequency noise in case of diffuse global illumination which
usually only changes slowly over the image but is problematic for
caustics which often contain sharp edges. Good filtering techniques
are needed to reduce this problem. Photons close to our point of in-
terest x should be weighted strongly while photons further away
should get less weight. Jensen [2002, p. 33] suggests to either use a
cone or a Gaussian filter. More elaborate filtering techniques were
introduced by Myszkowski [1997].

Photon mapping does not take the position of the camera into ac-
count and a lot of photons might not contribute to the final image.
One way to reduce this problem is to use importance mapping by
Soykens [2000]. The idea is to shoot importons from the viewer
into the scene to identify important areas. An area is important



Figure 8: Both images were rendered with photon mapping with an
5122 resolution in Mitsuba [2010]. The left image has less noise in
the region of the floor visible through the cube. The reason for this
is that the left image uses 32 spp instead of the 4 spp used in the
right image. However, although the left image was rendered in 55
seconds and the right image in only 16 seconds we can see that the
caustics in the right image are sharper than the blurry caustics in the
left image. This was achieved using 500.000 photons in the right
image instead of 250.000 in the left image. This means the photons
used in each density estimation are expected to lie closer together
which leads to a less blurry solution.

when light from photons in this area will reach the viewer. When
importance mapping is used photons are only stored in case that the
density of the photon map is too low and otherwise the energy is
distributed among the nearest photons.

Over the years several photon mapping improvements were devel-
oped to tackle the problems and hindrances of the algorithm and
they are important to include in an implementation ensure proper
render times. It is therefore recommended to include visual impor-
tance by Suykens [2002, pp. 61–90] or Keller and Wald [2000].
The implementation of Wards [1988] irradiance caching is another
by Jensen [2002, p. 41] as important considered improvements.
The idea is to only calculate indirect illumination if an interpolation
might be insufficient. Where possible a hybrid rendering algorithm
might be the better choice than direct visualization of the photon
map. Christensen [2002, pp. 93–121] discusses further improve-
ments like frame coherence, iterative faster lookup for the n nearest
neighbours, precomputed radiance estimates, unbiased radiance es-
timates, combining lookup results from several photon maps and
importance drive photon tracing. Kato [2002, pp. 122–193] ex-
plains how to combine multiple photon maps for cases where one
photon map does not fit into the memory, he explains the perfor-
mance behaviour of parallel photon mapping as implemented in
Kilaeua as well as improvements to the final gathering scheme like
faster parallel processing and final gather estimation and reprojec-
tion. He also provides information about parallel photon mapping
in Kilauea.

Transparent objects are difficult especially in cases where areas of
the scene are mostly enclosed by transparent materials. Kato [2002,
pp. 122–193] also describes a possibility to deal with such cases by
partially ignoring transparent objects for photon mapping.

Overall photon mapping is a very common and capable state-of-
the-art algorithm but it is rarely used with direct visualization of
the photon map. In conjunction with ray tracing algorithms photon
mapping can enhance difficult image parts like caustics. Although
photon mapping is consistent in the limit in reality the algorithm is
bound by the memory available for the number of photons which
can be stored in the photon map.

To achieve the necessary speed needed for real time caustics with
photon mapping Günther [2004] proposed an image space filtering
method relying on box filters without any continuity tests. Larsen
and Christensen [2004] presented a photon mapping algorithm re-
lying on drawing points in the framebuffer and filtering using the
GPU to achieve real-time frame rates for dynamic scenes. McGuire
and Luebke [2009] presented an image based photon mapping algo-
rithm which is able to render non trivial scenes at interactive frame
rates using rasterization.

4 Progressive Photon Mapping

Algorithm 2 progressive photon mapping
1: for all pixel do . ray tracing pass
2: trace ray until first diffuse hit point h
3: end for
4: while time is not up do . photon tracing
5: for all lights l do
6: trace photon p along ray
7: if p hits surface s then
8: if s is diffuse then
9: store p in global photon map

10: else
11: reflect, transmit, absorb
12: weight flux
13: according to Russian roulette
14: end if
15: end if
16: end for
17: for all hit points h do . progressive radiance estimate
18: decrease radius r
19: calculate new radiance τM(x,−→ω )
20: recall stored radiance τN(x,

−→
ω ) for h

21: update stored radiance
22: end for
23: discard photon map . store radiance for h instead
24: end while

Standard photon mapping is unable to converge to the correct re-
sult with any arbitrary precision as the algorithm is limited by
the available memory. Progressive photon mapping (PPM) by
Hachisuka [2008] improves this by allowing arbitrary precision
with a limited amount of memory. Algorithm 4 gives a high level
overview of the algorithm.

PPM is a multipass rendering algorithm where the first pass is a ray
and all subsequent passes are photon tracing passes. The memory
limitation is bypassed as not all photons are stored and instead the
estimation is improved with the new photons during each pass and
then the photons are discarded.

After each photon tracing step the density is averaged over the area
of the disc used to locate the photons as in Equation 7. As the radius
of the disc needs to be reduced in each step to converge to a zero
radius and allow arbitrary precision it is necessary to calculate the
number of photons in the smaller disc of size R(x)− dR(x) as in



Figure 9: PPM uses one first ray tracing pass in which all hit points
are stored until the first diffuse point to find all diffuse points visi-
ble in the image. Paths can be terminated by russian roulette. All
subsequent passes are photon tracing passes. The image was taken
from Hachisuka c© [2008].

Figure 10: A visualization of the increase of photons and radius
reduction in each step of the photon tracing passes as defined by
Equation 7 and Equation 8. The increase of photons and the reduce
of the radius are necessary to ensure that PPM is consistent. The
image was taken from Hachisuka c© [2008].

Equation 8. This assumes that the density in R(x) is constant which
requires the number of photons to increase by αM(x) with α as the
rate of photons to keep in each step. During each step at each hit
point the total flux is accumulated and stored as the unnormalized
flux,

L(x,ω)≈ 1
πR(x)2

τ(x,ω)

Nemitted
. (7)

The idea is to reduce the current radius R(x) from iteration to iter-
ation by some value dR(x). It is necessary to reduce the number of
photons as the reduction of the radius leads to some photons drop-
ping out as in,

N̂(x) = πR̂(x)d̂(x) = π(R(x)−dR(x))2d̂(x), (8)

where N̂(x) is the new number of photons. This leads to the formula
for the reduced radius as in,

R̂(x) = R(x)−dR(x) = R(x)

√
N(x)+αM(x)
N(x)+M(x)

, (9)

where R(x) is the current radius, R̂(x) is the radius used in the next
iteration and the number of photons should increase by a factor
αM(x).

As the radius between two passes is reduced it is impossible to
simply add up the unnormalized flux of the last and the current
pass. To accredit for the radius changes the new number of photons

is calculated as in Equation 8 and the new radius is calculated as
in Equation 9. The radiance estimate for photon tracing passes is
Equation 7. The BRDF is already multiplied into the unnormalized
flux τ(x,ω). We refer the interested reader to Hachisuka [2008, pp.
4–5] for a derivation of those formulas.

Figure 11: The result of the torus scene rendered with Mit-
suba [2010] for 3 hours with a 512x512 pixel resolution. The left
image is rendered with progressive photon mapping and the right
image with path-space Metropolis light transport (32768 spp). PPM
still misses some light paths in the marked areas and the caustics
are not as sharp as those from the PSMLT rendering. However, the
PPM rendering is less noisy because the noise is blurred.

As progressive photon mapping averages the normalized flux it can
be expected to be converge slower than standard photon mapping
because this requires more samples for an accurate representation.
Progressive photon mapping is to prefer over photon mapping when
not the rendering time but the memory is the limitation. However,
it is not easy if not impossible to determine the required density and
memory requirement for standard photon mapping beforehand such
that the result image error is bounded by an arbitrary chosen ε .

Pedersen [2013] presented a parallel implementation of PPM on
GPUs using the memoryless (stochastic) progressive photon map-
ping of Knaus and Zwicker [2011]. Knaus and Zwicker had shown
that a radius reduction without the storage of local statistics is vi-
able. They show that this is possible with a reformulation of pro-
gressive photon mapping where the expected average error as well
as the variance converge to zero.

The idea of Knaus and Zwickers memoryless progressive photon
mapping allows an increase of the variance of the error by a factor
as given in Equation 10,

Var[ei+1]

Var[ei]
=

i+1
i+α

. (10)

The parameter α with 0 < α < 1 defines how fast the variances
increases. As the variance is inversely proportional to the square



radius as in Equation 11 it is possible to derive a formula for the
radius reduction as in Equation 12, i.e.,

r2
i+1

r2
i

=
Var[ei]

Var[ei+1
=

i+α

i+1
, (11)

r2
i = r2

1

(
i−1

∏
k=1

k+α

k

)
1
i
, (12)

and the representation of their Monte Carlo estimate is given as

cN =
1
N

N

∑
i=1

1
pe(xi,ωi)

W (xi,ωi)(L(xi,ωi)+ ei), (13)

cN in Equation 13 is the pixel value after N samples (xi,ωi). The
pair (xi,ωi) is the position and incoming direction of path the sam-
ple.

The inverse proportional relation of variance to squared radius in
Equation 11 allows an explicit radius reduction as in Equation 12.
They discuss several possibilities for the choice of the initial refer-
ence radius r1, e.g. one global reference radius, a local reference
radius dependent on the pixel footprint or a local reference radius
dependent on the distance to the k-nearest neighbours.

The high level representation of their algorithm from Knaus and
Zwicker [2011] is given as in Algorithm 4.

Algorithm 3 Memoryless progressive photon mapping as high level
pseudo code from Knaus and Zwicker [2011]

1: i← 0
2: while time is not up do
3: generate photon map
4: for all pixel do
5: trace path from eye until diffuse surface is hit
6: hit position and direction are (xi,ωi)
7: path contribution is W (xi,ωi)
8: path probability density is pe(xi,ωi)
9: get current radius ri from reference r1 and Eq. 11

10: obtain radiance estimate L(xi,ωi)+ ei
11: update pixel value from Eq. 13
12: end for
13: end while

Their algorithm is essentially the same as a standard (stochastic)
progressive photon mapper and therefore can be integrated easily
into a photon mapper. The algorithm uses a different predetermined
radius reduction which allows parallelism because no local statistics
are required. They report render times and results which are almost
the same as for stochastic progressive photon mapping.

Pedersen [2013] builds upon memoryless progressive and describes
an implementation of it on the GPU. He also implemented a grid
based and a hash table approach for photon storage on the GPU and
showed that those two approaches are faster than the standard k-d
tree based implementations on a GPU. We refer the reader to Knaus
and Zwicker [2011] for the proof and derivation of the formulas for
memoryless progressive photon mapping. They have shown that
both the expected error as well as the variance of their method con-
verges to zero and that the generated sequence of radii leads to the
same sequence as PPM.

Kaplanyan and Dachsbacher [2013] presented an adaptive progres-
sive photon mapping algorithm. They show that a unique asymp-
totically optimal α exists and that the initial choice of radius r1 is

crucial. A different approach for the choice of α was given by Fu
and Jensen [2012]. A comparison of those two choices is still future
work.

Liu [2014] showed how the importance photon shooting in both
photon mapping and progressive photon mapping can be improved
by using an adaptive method.

5 Stochastic Progressive Photon Mapping

Algorithm 4 progressive photon mapping
1: for all pixel do . ray tracing pass
2: trace ray until first diffuse hit point h
3: end for
4: while time is not up do . photon tracing
5: for all lights l do
6: trace photon p along ray
7: if p hits surface s then
8: if s is diffuse then
9: store p in global photon map

10: else
11: reflect, transmit, absorb
12: weight flux
13: according to Russian roulette
14: end if
15: end if
16: end for
17: for all hit points h do . progressive radiance estimate
18: sample random point −→x i in search radius S
19: decrease radius r
20: calculate new radiance τi+1(S,

−→
ω )

21: update stored radiance for region S
22: end for
23: discard photon map . store radiance for h instead
24: end while

Stochastic progressive photon mapping (SPPM) is an improvement
of progressive photon mapping by Hachisuka [2009]. The main
idea of SPPM is to use a distributed ray tracing pass after each pho-
ton tracing pass to estimate the density over the area around the hit
point. The radius change as well as light estimation remains un-
changed from ppm but instead of the fixed hit points x a region S
with random sample point xi is used. Those hit points xi are the
result from the distributed ray tracing pass. Algorithm 5 shows the
pseudo-code for the stochastic progressive photon mapping algo-
rithm.

Figure 12: The idea of SPPM extends the PPM algorithm by using
a distributed ray tracing step after each photon tracing step. While
PPM uses the fixed hit points generated by the first ray tracing step
the SPPM algorithm generates random samples into the direction of
those points to generate a density estimation over the area around a
hit point instead. The image was taken from Hachisuka c© [2009].



The density estimate for an area S is given by

L(S,ω) = limi→inf
τ(S,ω)

NemittedπR(S)2 , (14)

which it is essentially the same equation as for progressive photon
mapping except that an area is evaluated instead of points. This
simple change is achieved by using the hit points xi generated dur-
ing the distributed ray tracing pass as in Figure 5.

We refer the reader to Hachsiuka [2009] for the proof that this
change still converges to the correct solution.

Figure 13: Both images were rendered with Mitsuba [2010]. The
left one was rendered with PPM for 3 hours and the right image with
SPPM for 25 minutes. The SPPM algorithm already had shown
better convergence in difficult SDS areas inside the cube than the
PPM algorithm.

Overall SPPM is simply an improvement to PPM and should be
preferred for most scenes. It does take slightly longer to render
because the distributed ray tracing adds another step which needs
enough samples for good converges. As SPPM does estimate the
density over a region it is well suited for effects like depth-of-field
or motion blur effects.

Weiss and Grosch [2012] published an approach for animations
called stochastic progressive photon mapping for dynamic scenes
(DSPPM). The idea is to identify hit points and photons which are
to static objects and reuse them. This is also done for photon paths
where a photon path is split in case the photon hits a dynamic ob-
ject.

6 Many-Light Rendering

Many-light rendering methods are algorithms for fast global illumi-
nation where virtual light sources are distributed in the scene and
the illumination is calculated as the direct lighting of each of those
virtual light sources (VLS). An increasing number of light sources
in general affects the rendering time negatively because every light
source has to be treated separately. Algorithms to reduce the im-
pact of the number of light sources therefore are required. This is
not a problem for biased rendering in particular but for all render-
ing algorithms in general. In ray tracing and photon mapping algo-
rithms shadow rays have to be shot to each light source. In photon

mapping the number of photons needs to increase with more light
sources to ensure sufficient density but the shadow photon approach
can be expected to be even more important to reduce the number
of shadow rays shot. For many-light rendering light reduction tech-
niques might be even more interesting as the number of virtual light
sources can be 100.000 and more.

Dachsbacher et al. [2014] published a survey about scalable real-
istic rendering with many-light methods. This second part of this
paper focuses on providing a short excerpt about many-light ren-
derings and to extend this to light minimization techniques to deal
with a huge number of lights. Light minimization techniques focus
on clustering lights to reduce the computational rendering effort or
to turn off lights and redistribute their energy to other light sources.
However, light minimization techniques can be expected to benefit
all state-of-the-art rendering algorithms for scenes with many light
sources.

The basis of many-light rendering methods is the instant radiosity
method by Keller [1997]. The basic idea is to shoot light particles
and create a virtual point light source (VPL) at every surface they
hit.

Algorithm 5 A basic high level pseudo code for many-light ren-
dering algorithms based on the description by Dachsbacher et
al. [2014]

1: if phase == VPL generation then
2: randomly choose primary light source S
3: sample a random point x and direction ω by creating a VPL
4: trace the ray x+ tω . If it intersects a surface then create a

VPL at the intersection location
5: Decide randomly whether to reflect, transmit or stop using

Russian Roulette.
6: end if
7: if phase == rendering then
8: for all surface points do
9: i← 0

10: while i < M do
11: if illumination is not blocked then
12: compute contribution of VPL[i]
13: end if
14: i← i+1
15: end while
16: end for
17: end if

Many-light rendering algorithms like instant radiosity have prob-
lems with difficult surfaces like glossy materials the same way as
photon mapping algorithms as a huge number of VPL, respectively
photons, are required for convergence. Similar to photon map-
ping where all photons should carry the same flux and should be
stored in important regions the same requirements hold for VPL.
Probability based rejection of unimportant VPLs by Georgiev and
Slusallek [2010] is the idea to reject VPLs with low flux and nor-
malize the carried flux accordingly to the rejection probability. An
alternative to the VPL rejection is the Metropolis-Hastings sam-
pling as suggested by Segovia et al. [2007]. Similar to the impor-
tance driven photon tracing a method to generate VPLs from the
camera view was proposed as part of the bidirectional instant ra-
diosity method by Segovia et al. [2006].

To efficiently be able to render high quality many-light images a
huge number of VPL is required. Algorithms which are able to
deal with millions of light sources efficiently are called scalable
many-light algorithms. Dachsbacher et al. [2014] define scalable
rendering algorithms in the context of many-light rendering as al-
gorithms which cost increases slowly, or sub-linearly, with the num-



ber of used light sources. The common methods among these are
lightcuts, multidimensional lightcuts and bidirectional lightcuts by
Walter [2005; 2006; 2012], matrix row-column sampling by Hašan
et al. [2007] and LightSlices by Ou and Pellacini [2011]. An ap-
proach based on genetic algorithms to automatically modify light
source intensities and group light sources using a global error met-
ric had been presented recently by Podaras [2014]. All those meth-
ods share the idea to select a sub set of light sources, group them
and refine the selection based on an error metric.

Compared to photon mapping methods, less light sources have to be
distributed than photons but their evaluation is more costly. While
most VPL based methods are unable to render caustics and can
produce singularities. Singularities are caused by the fact that the
squared falloff term can blow up the light source contributions to ar-
bitrarily large values. To alleviate this, most VPL based algorithms
clamp the contribution at the cost of introducing bias.

Wang et al. [2013] presented an out-of-core many-light rendering
algorithm able to handle scenes with 17.1 million triangles and 256
million lights. They modified lightcuts by Walter [2005] and im-
plemented their version in an out-of-core framework.

7 Lightcuts

Figure 14: The image was taken from Walter c© [2005] and shows
the reference image with all four light sources (left), the result of
one particular lightcut (middle) and the regions of low error (right).

Lightcuts had been the first scalable many-light rendering algo-
rithm. The idea is to structure all lights in a binary tree and begin at
the root node representing a cut where all light sources are grouped
into one cluster. Each cluster is a combination of two light sources,
two clusters or a combination thereof. An example scene and one
lightcut is shown in Figure 7.

The algorithm iteratively refines the clusters by selecting the node
with the highest relative error bound. This node is refined by re-
placing the node by its child nodes. A relative error bound of 2% is
suggested. The selection of nodes in the light tree is called lightcut.
Figure 7 shows three different lightcuts and the result rendering.

The binary light tree should cluster lights together which are as sim-
ilar as possible. Therefore one separate tree for omnidirectional,
oriented and directional point light sources is build. The building
of the tree itself is not sublinear but as it has to be done only once
per image or once per scene for static light sources the cost is in-
significant.

8 Advanced Lightcuts

Reconstruction cuts are a way to increase the speed of lightcuts
by computing them sparsely. The biggest cost of lightcuts are still
shooting shadow rays. By using lightcuts sparsely and interpolation

Figure 15: The top row shows the scene and the position of all four
light sources. The second row shows the scene for three different
lightcuts. The coloured areas are those where the difference to the
scene with all four individual light is small. The third row shows
the corresponding light clustering for each of the three lighcuts. The
reference image is the left image in Figure 7. The image was taken
from Walter c© [2005].

between those lightcuts the amount of shadow rays can be signifi-
cantly reduced. The image is separated into 16x16 tiles and light-
cuts are calculated for the corners. Each block is subdivided if the
samples at its corners do not match. The samples are considered
a match if they hit the same type of material with surface normals
which do not differ more than an angle α (e.g. 30 degrees). At each
sample position a cone test is done to verify if the other points lie
within the cone. If any of the points lies inside the cone of one of
the other points it could be that the geometry of the surface shadows
each other. In such cases further subdivision is required.

Figure 16: A cone test for two types of geometry. In the left case
no point lies in the cone of the others and no further subdivision
is required. In the right case the higher two points lie inside the
cone of the lower point. This means the geometry possibly shadows
the lower point and therefore subdivision is necessary. Image from
Walter c© [2005].

Multidimensioanl lightcuts by Walter et al. [2006] extend the idea
of lightcuts to more dimensional integrals. This allows integration
over time or the cameras aperture for motion blur and depth of field
effects. The authors describe the multidimensional lightcuts as the
integrals of radiance,

pixel =
∫

time

∫
volume

∫
aperture

∫
pixelarea

L(x,omega), (15)

over time, volume, aperture and pixel area.



The primary light sources are discretized into a set of point lights L
as for lightcuts. For each pixel a set of gather points G is generated
and the pixel color is calculated as in,

pixel = ∑
( j,i)∈G×L

S jM jiG jiV jiτ jiI ji, (16)

where M is the material, G the geometry, V the visibility and I the
intensity term. τ ji is a binary decision variable which is one if the
points exist at the same time and zero otherwise. As an evaluation
over all pairs ( j, i) ∈G×L is too expensive and an implicit product
graph is used instead. The product tree is generated by generating
a tree for all points j ∈ G and one tree for all points i ∈ L. The
product graph is the Cartesian product graph of those two trees.
The main benefit of this approach is that only the two small gather
and light trees are required instead of the larger product graph. This
means that instead of millions of pairs only a small subset of several
hundreds have to be evaluated on average. The VPL generation is
the same as for lightcuts.

Bidirectional lightcuts by Walter et al. [2012] extends the methods
for efficient evaluation of millions of light and gather pairs intro-
duced in multidimensional lights cuts into a bidirectional frame-
work. Instead of just using one bounce for eye rays during the gen-
eration of gather points several bounces are allowed. The gather
points are referred to as virtual sensor points (VPS). This allows
them to render more light paths and material models like subsur-
face scattering which are strongly clamped in usual VPL methods.
The bidirectional lightcuts are also very efficient for glossy surfaces
as the countertop in Figure 8. The bidirectional lightcut algorithm
could be included in other VPL algorithms but they suggest multi-
dimensional lightcuts as this method is very efficient in evaluating
only a tiny subset of all VPS and VPL clusters. With new weighting
strategies they are able to stop paths earlier and to discard VPS with
low contribution.

Figure 17: The composition of standard VPL and bidirectional
paths which allows for paths including subsurface scattering which
result in a high quality noise free image from bidirectional lightcuts
(BDLC). The image was taken from Walter c© [2012].

Progressive lightcuts on GPU by Davidovič et al [2012] choose
a different approach to decrease the bias of lightcuts. They use
a progressive relaxation scheme, which changes the clamping for
singularities depending on the number of VPL.

9 Automatic Lighting Design

Podaras [2014] presented a light source minimization technique to
reduce the number of light sources similar to lightcuts. Their al-
gorithm does not require to build any additional data structure and
supports full global illumination. All light sources are represented
as entries in one vector. Either the light sources are represented by
a binary variable which indicates if the light source shall be used or

Figure 18: Example of two area light sources in red which are re-
dundant with the larger area light source in cyan. The algorithm
tries to disable unnecessary light sources and move their intensities
to other light sources for a similar overall contribution. The algo-
rithm does also work for arbitrarily placed light sources and is not
limited to test scenes like the overlapping lighting setup. The image
was taken from Podaras c© [2014].

by the light source intensities. In each step of the used genetic al-
gorithm a mutation or crossover is computed to search the solution
space. A mutation is either to turn a light source on or off or in case
of continuous search a small change of one light source intensities.
A crossover is the combination of two light sources at a random
index to create a new light source.

The fitness of the temporary solution is calculated as the root-mean-
square error (RMSE) over all pixels between the current temporary
image and one reference image but any error metric would be possi-
ble. The strength of their contribution lies in the automatic lighting
design which does not require any prior knowledge about the scene
or light sources. However, as any arbitrary image can be used as
reference image it would be possible to allow user guidance, for
example an artist drawing over the reference image to influence the
result.

Figure 19: The left image was rendered with bidirectional path
tracing using 100 light sources for one hour. The right image is
the solution after 1000 iterations of their algorithm using only 58
lights. The light sources are mostly blue area lights placed around
the scene. The algorithm does not only reduce singular light sources
that do not contribute to the scene, but also recognizes many-for-
many exchanges where a large amount of light sources can be sub-
stituted by a different, smaller subset. The image is courtesy of
Podaras c© [2014].

This technique requires algorithms for fast generation of high qual-
ity reference images. The evaluation of the algorithm for artistic
guidance and not yet converged reference images still has to be
done. In case that the reference image is not converged yet, but



a quick estimation is used as reference for the algorithm, then a
robust error metric is required.

Figure 1 shows the results of stochastic progressive photon map-
ping after just a few seconds of rendering including caustics there-
fore SPPM might be a prime candidate to generate reference images
which are used as input for the automatic lighting design algorithm.

10 Conclusion

The best algorithm for a scene does depend on many factors like
geometry, materials and type of light paths. Caustics can be con-
sidered difficult to render where most earlier global illumination
algorithms take a long time to converge or are unable to find such
paths in reasonable time altogether. The high degree of parallelism
on GPUs does allow very fast rendering algorithms but implemen-
tations are often more difficult because transfering information be-
tween the CPU and GPU is often the bottleneck in the rendering
process.

Biased methods can result in very high quality images, though
many of these methods can be improved with bias-suppression
techniques. Bidirectional Lightcuts reduces the bias in lightcut-
based methods and allow higher quality renderings. Many-light
rendering algorithms might still have problems with caustics but
with the introduction of bidirectional lightcuts subsurface scatter-
ing had become available for many-light rendering.

Many different approaches for biased light transport are currently
researched. Both Dachsbacher et al. [2014, p. 14] as well as Wal-
ter et al. [2012, p. 3] suggested that the future of global illumina-
tion lies in the clever combination of existing techniques in form
of hybrid algorithms. This trend has also affected available ren-
derers in industry in form of hybrid renderers as listed by Chaos
Group [2014]. The idea to combine the best of different approaches
might sound obvious but it is not necessarily easy to find efficient
and robust hybrid algorithms but it is likely that the future of effi-
cient scalable light transport lies in some sort of hybrid algorithm.
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