
Upsampling Fluid Simulations

Felix König∗

TU Vienna
Institute of Computer Graphics and Algorithms

Abstract

This paper aims at presenting fluid simulations on an Eulerian grid
and explores different strategies which improve those simulations.
The first section elaborates on the building blocks for advanced al-
gorithms. The fundamental concepts of a standard fluid solver are
covered in great detail. The paper therefore also serves as an intro-
ductory reading to people that are not familiar with the basic con-
cepts of Navier-Stokes equations and grid like numerical solvers.
All advanced methods are described in the following chapters. Fur-
thermore, the paper also discusses hybrid approaches between La-
grangian and purely Eulerian methods. The conclusion gives an
outline and comparison of the presented techniques.

CR Categories: 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation;1.3.5 [Computer Graphics]:
Computational Geometry and Object Modeling— Physically based
modeling

Keywords: fluid simulation, Navier-Stokes equations, tetrahe-
dral discretization, adaptivity, wavelet turbulence, vorticity confine-
ment, Lagrangian fluid simulation, procedural noise, extrapolation,
PDE solvers, stable solvers

1 Introduction

The topic of simulating both visually convincing and physically re-
alistic dynamics of fluids and smoke is important in the field of an-
imation, cinematography and within the development of computer
games. The creation of new algorithms that model complex mo-
tion of fluids depends on different factors. Computations should of
course be as fast as possible and their results are expected to deliver
a level of detail and complexity that is comparable to real nature
phenomena. At the same time, algorithms ought to provide enough

∗e-mail: e0917104@student.tuwien.ac.at

flexibility for the artist to deviate from pure physical realism but
still achieve convincing animations. Recent algorithms can be di-
vided into two classes while both classes try to add more detail into
a simulation:

• Algorithms that try to improve the numerical approximations
that a fluid solver makes and

• algorithms that try to provide a convincing feel of realism.

All of those classes try to achieve their results with as minimal com-
putational overhead as possible. Especially if those algorithms are
not entirely physically accurate, details are synthesized in a fashion
that allows fast computation of results.

2 Basic concepts of fluid dynamics

This section covers the basics of systems that model fluid motion
and is meant as an introduction in order to understand more sophis-
ticated approaches.

2.1 The Navier-Stokes equations

The core component of a system that models fluid mechanics are
the Navier-Stokes equations:

∂u
∂ t

=−(u ·∇)u︸ ︷︷ ︸
advection

− 1
ρ

∇p︸ ︷︷ ︸
pressure

+ ν∇
2u︸ ︷︷ ︸

di f f usion

+ Fext︸︷︷︸
external f orces

, (1)

∇ ·u = 0, (2)

where u denotes the velocity field, p stands for the pressure field,
ν describes the material viscosity, ρ is the density and Fext is the
external force field. The left hand side of equation 1 depicts the
temporal change of the velocity field and is called momentum
equation. The Navier-Stokes system essentially describes how the
motion of a particle in a fluid is continued. The meaning of the
aforementioned symbols is kept consistent throughout the whole
paper. Equation 2 is called the incompressibility constraint and
necessary for providing stable solvers.

The momentum equation consists of four major terms that
can be described intuitively.

Advection: The term advection refers to the inherent prop-
erty of a fluid which makes objects inside it follow a certain flow.
However the equation also describes the movement of the velocity
field by itself which is modeled by the term (u ·∇). As a result, not
only objects are moved by the velocity field, it moves or advects
itself. This is also the reason why solving fluid dynamics is hard. It
is still not clear if there always exists an analytic smooth solution
to these equations. This is called the Navier–Stokes existence
and smoothness problem which is part of the Millennium Prize
Problems. Figure 1 depicts the advection of smoke densities. In

Figure 1: The advection moving a set of smoke particles along a
static velocity field [Stam 2003].

this image, the velocities are not advected.

Pressure: Pressure forces that are exerted on each fluid are
modeled by this term. The gradient of the pressure field ∇p
points towards the steepest ascend of the field. However, due to
the laws of physics, the particle is pushed from a higher pressure
region to a lower one which is denoted by the minus sign. Since
denser particles are harder to accelerate, the force is divided by the
particles density ρ . An example for this behavior can be described
by smoke particles that dissolve faster than thick liquid substances
such as honey due to the lower amount of density present within
smoke.

Diffusion: Different concentrations inside a fluid tend to av-
erage themselves out in order to achieve an equilibrium state.
Dropping a viscous substance into a fluid results into diffusion.
Depending on the viscosity, the diffusion proceeds more rapidly or
slowly. This is the reason for the appearance of ν in the equation.
The Laplace Operator ∇2 models the diffusion in a sense that it
has a high value if the average difference of the neighboring values
of u is high. If the adjoint velocities differ to a smaller extent, the
diffusion force is weaker. Therefore the optimal equilibrium state
is reached if ∇2u = 0.

External force field: The external force field allows to add
additional forces which can model heat, user interaction, wind
or user defined constraints such as shaping the fluid motion in a
particular fashion that is suitable for the artists intentions. For
example, an artist could define a target pressure model to which
the fluid should converge. An illustration of such a user defined
shaping can be seen in Figure 2. In some circumstances [Fedkiw
et al. 2001] a smoke simulator can be defined that employs a
temperature model that further alters the experienced velocity. The
force term is called buoyancy and evaluates as follows:

Fbuoy =
(
−αρ +β (T −Tamb)

)
z. (3)

In this case, z points in the vertical direction and Tamb is the tem-
perature of the air. Furthermore, α > 0 and β > 0 are physically
meaningful constants and T is the temperature of smoke. The first
term −αρ is a gravitational force which pulls heavier particles
towards the ground. The second term β (T −Tamb) is positive when

Figure 2: Shaping fluids into a structure by using external force
fields. The image was taken from the 2012 reel video of Fusion CI
Studios.

T > Tamb and acts as an uplifting force, otherwise it accelerates the
gravitational pull.

In addition to equations 1 and 2, the movement of the den-
sity field ρ is often incorporated into fluid systems [Stam 2003].
The equation has a similar notion as the momentum equation:

∂ρ

∂ t
=−(u ·∇)ρ +κ∇

2
ρ +S. (4)

The intention is to model the advection of the densities that is
caused by the first term on the right hand side of equation 4. The
diffusion is denoted by the second term and the term S corresponds
to the addition of an external force specific to the density field ρ .
Similar to the viscosity constant ν , κ denotes the strength of the
densities to which extent they do withstand diffusion. The same
principle of the momentum equation can also be applied to other
scalar fields besides ρ such as the temperature T for instance.

The incompressibility condition states that the fluid con-
serves mass and can be understood intuitively. As we integrate
the influx and efflux of a fluid over an arbitrarily shaped, closed
surface with boundary ∂Ω, the result should always yield zero.
This is due to the fact that no density is lost inside the volume.
Mathematically speaking, the equation is written as follows:∫ ∫

∂Ω

u ·n dΩ =
∫ ∫ ∫

Ω

u ·∇ dΩ = 0, (5)

where n denotes the normal along the boundary ∂Ω. In order to
resolve to 0, the integrand u ·∇ must be 0 and this yields the incom-
pressibility condition. A vector field u that fulfills this condition is
also called divergence free [Stam 1999].

2.2 Enforcing the Incompressibility Condition

Upon solving equation 1 of the Navier-Stokes system, it needs to be
ensured that the resulting vector field u is divergence free. Since a
solver operates on time based iterations where each iteration covers
a time interval ∆t, this constraint needs to be enforced after each
time step. This step is usually performed by solving a Poisson
equation [Ando et al. 2013] or via the Helmholtz-Hodge Decom-
position [Stam 1999]. The latter states that any vector field w can
be decomposed into:

w = u+∇q, (6)

where u is divergence free and q is a scalar field. Therefore, u can
be made divergence free by applying the projection P:

u = P(w) = w−∇q. (7)

http://fusioncis.com/
http://fusioncis.com/

In terms of the first Navier-Stokes equation this means that we need
to solve:

∂u
∂ t

= P
(
− (u ·∇)u+ν∇

2u+Fext
)
, (8)

where the term P
(
∇p
)

vanishes due to Equation 7 and because of

the linearity of P. Furthermore, P
(

∂u
∂ t

)
= ∂u

∂ t as P(u) = u because
of the divergence free property of u and the same holds for the par-
tial derivative as long as u is smooth.
As mentioned before, the second option to extract the divergence
free part of any vector field is accomplished by solving a Poisson
equation. If we multiply both sides in Equation 6 with ∇, we end
up with:

∇w = ∇
2q, (9)

as ∇ · v = 0. This is precisely the Poisson equation. As Navier-
Stokes equations are solved over discrete time steps this equation
turns into:

∆t∇2q = ∇w (10)

In order to extract the divergence free part, we need to compute the
minimal amount of energy that is necessary to change the state into
an incompressible one. This can be achieved via energy minimiza-
tion:

q = argmin
q

∫
Ω

1
2
‖w−∆t∇q‖2dΩ. (11)

2.3 Vorticity Confinement

Another important property of fluids is the concept of vorticity con-
finement. This aspect of fluids is not directly composed inside the
Navier-Stokes equations but still corresponds to a component of
every fluid motion. It becomes particularly important if the fluid
solver is executed on a coarse grid which means that some amount
of high frequency details cannot be properly computed. One way
to add such lost energy into the system is by using the concept of
vorticity confinement [Fedkiw et al. 2001]. This effect becomes ap-
parent when fluids of low viscosity are rapidly accelerated by the
velocity u. The flow might follow a turbulent pattern which can also
be observed when the fluid is pushed around an obstacle as depicted
in Figure 3. The vorticity of a vector field can be described by:

Figure 3: Smoke particles that are pushed around a ball where high
vorticity can be observed [Fedkiw et al. 2001].

ω = ∇×u, (12)

which holds for incompressible flows. After obtaining the vorticity,
a force can be defined that is directed towards the center of the
corresponding vortex:

µ = ∇|ω|. (13)

The resulting force field is depicted in Figure 4. As µ conveys not

Figure 4: Visualization of the force field µ [Fedkiw et al. 2001].

only the direction, but also the size of the vortex, this term is nor-
malized by a division through |µ| and called N. The reason is that
the strength of the rotation in the vortex should be adjusted manu-
ally. The rotation is obtained by taking the cross product between
N and ω multiplied by a weighting term ε:

Fcon f = εh(N×ω). (14)

In Equation 14 the parameter h corresponds to the amount of spa-
tial discretization. The higher the discretization factor is, the faster
small scale details such as vorticity will be damped out. Therefore
the added force ε(N×ω) should be scaled appropriately.

2.4 Solving the Navier-Stokes on a Finite Eulerian
Grid

A numerical solution to the Navier-Stokes equations is composed
of the following steps that are described in [Fedkiw et al. 2001].
Initially, scalar, pressure and density fields are stored in memory
together with a predefined force field Fext or a model to obtain such
external forces. A velocity field may or may not be present as it can
evolve over time. The next steps require:

1. Computing and adding external forces Fext ,

2. advecting the velocity field,

3. computing the diffusion and

4. applying the projection operator P described in equation 8.

The evaluation of these steps is usually performed on a 2 or 3 di-
mensional grid where finite differentials of the Nabla and Laplace
operators can be used instead of continuous derivatives. Further-
more, those iterations are performed for a finite time interval ∆t as
mentioned in section 2.2. The coarseness of the grid in both space
and time determines the numerical error of the method which is also
dependent on the order of the solver that is used. Using a dense
grid requires more time demanding computations but at the same
time the accuracy of the solution is improved. Advanced methods
described in further sections deal with this trade-off. A key com-
ponent of the computation involves the evaluation of the advection
term which should not be solved via a forward projection. The ve-
locity vectors in these grids can reside at the center of each grid

cell or at the faces of each cell, depending on the used algorithm,
different strategies are employed.
Supposing that the initial state of u is u(x, t), where x is the position
of the grid cell and t is the current time, we can evaluate the system
as follows. The partial solution u1(x, t+∆t) is obtained after adding
the forces:

u1(x, t +∆t) = u(x, t)+∆tFext , (15)

where the assumption has been made that the forces do not vary
significantly during ∆t.
Concerning the advection, a system of finite differences could be
described and solved, also denoted as forward projection. This
method however, is not stable in a sense that the velocity values
will quickly blow up and diverge if the time step ∆t is not suffi-
ciently small. Dealing with small time steps is also infeasible be-
cause of the computational effort. The key idea of a stable solution
can be understood intuitively and is presented in [Stam 1999] as
well as [Stam 2003]. Instead of forward projecting velocities, a

(a) Particle (b) Tracing (c) Grid
velocities

(d) Interpola-
tion

Figure 5: Tracing the velocities back in time [Stam 2003].

backtracing step is introduced. In the previously obtained veloc-
ity field u1(x, t +∆t), the point x should have been advected from
t to t +∆t. Therefore this point is traced backwards along the path
p(x,s) on which it traveled from the previous time step to the cur-
rent one. Its velocity is then changed to the velocity of the previous
time step at the location p(x,−∆t). The newly acquired force is
then:

u2(x, t +∆t) = u1
(

p(x,−∆t), t +∆t
)

(16)

At this point it is important to consider that the point p(x,−∆t)
must not lie on the center of a grid cell, actually, this is rarely
the case. Therefore, its true velocity value must be obtained by
interpolating the velocities on the neighboring grid cells or faces,
depending on where the velocities are stored. Figure 5 illustrates
the backtrace step along with the interpolation, in this case, the
velocities are stored at the grid cells faces. In subfigure 5a, the
velocity u1(x, t +∆t) is shown, backtracing is depicted in subfig-
ure 5b. The neighboring velocities of the point at p(x,−∆t) are
shown in subfigure 5c. The final velocity is then interpolated with
bilinear interpolation as the calculations are performed on a 2 di-
mensional grid. The interpolation can be changed to a cubic or
trilinear model if more accuracy is needed or the grid size is 3 di-
mensional. This method of calculating the advection is also known
as the semi-Lagrangian scheme.
As a next step, the diffusion needs to be computed that is equivalent
to the standard wave equation:

∂u2

∂ t
= ν∇

2u2. (17)

A solution to this equation can be computed by solving a dis-
cretized version of ∇2.

Level-set functions: As explained in Section 2.1 any phys-
ical quantity such as densities, temperatures or velocities can be
advected by u. In case of an Eulerian grid, it would be insufficient
to model the whole n dimensional space because only a portion of

all cells contain fluids. Therefore, a level set function ϕ(x, t) is
used to describe the subset of grid cells that contain the fluid. It is
an implicit surface function where {(x, t) : ϕ(x, t) = 0} describes
the boundary of the fluid. The signed distance of ϕ(x, t) is stored
on each grid cell x and is either positive when it is outside of the
liquid or negative when it lies inside of the liquid. The evolution of
a liquid in space and time is described by:

∂ϕ

∂ t
=−u ·∇ϕ. (18)

3 Frequency-Based Upsampling

When working on improvements of the numerical dissipation pro-
duced by finite and coarsely spaced simulation grids, information
about the frequency spectrum that fluids convey can help in pro-
ducing a more realistic output. This section explains how frequency
analysis can be used in the fluid simulation. The goal is to gener-
ate artificial noise patterns and add them to the existing fluid in a
realistic way using spectral components. The requirement of a real-
istic noise function is that it should contain high frequency details
that are not present in the system. Furthermore, the noise should be
added only at the positions where such information is lost.

3.1 Wavelet Noise and Wavelet Theory

A highly valuable tool in examining frequency information of input
signals is the Fourier-Transform. This transformation precisely
extracts the frequency components of a input function. However,
one can not distinguish at which point in time certain frequencies
exist in the signal. This is due to the Gabor limit which states that
it is not possible to determine a functions power spectrum for both
the frequency and time information with arbitrary fineness [Cohen
1995]. In case of the Fourier-transform, precise localization
of the frequency is possible by completely sacrificing the time
localization. In contrast, the wavelet transform allows time and
frequency analysis in conjunction, however, the Gabor limit is still
present. This is reflected by the fact that precise frequency analysis
of lower frequency components is possible but the time localization
is poor and vice versa for high frequency components.
Wavelet functions are important when well constrained noise
patterns need to be constructed. The first approach in designing
such procedural textures at different frequency levels was made
in [Perlin and Velho 1995]. The authors explain how artificial
details in a texture can be added to an image and its magnified and
reduced versions. If an image is modified at the resolution 2n×2n

and later changed to a resolution of 2n−1 × 2n−1 it needs to be
blurred before this change can be applied. The blurring is nec-
essary, otherwise the picture at the new resolution would contain
aliasing artifacts because of the high frequency components that
cannot be properly displayed at a lower resolution. Filtering the
image with a Gauss kernel is the typical approach when removal
of such problematic high frequency components is desired. If the
picture is again upsampled to 2n× 2n these lost details need to be
added back and this is done by storing them in a separate 2n× 2n

matrix. A bandpass pyramid can be created that contains the
lost frequencies up to scale 21× 21. [Perlin and Velho 1995] also
describes that noise can be added and removed beyond the initial
maximum resolution of an image. This resolution corresponds to
the Nyquist limit. The method however, is not entirely aliasing
free as discussed in [Cook and DeRose 2005]. Therefore, the
authors of this work introduced a noise generation method that
produces no aliasing artifacts even when noise patterns are created
beyond the Nyquist limit. This is especially important if upsampled

fluid movements need to be created that lie above the resolution
of the finite grid cells, e.g. above the Nyquist limit of the simulation.

The authors of [Cook and DeRose 2005] proved that there
exists a noise function N(x) that can be upsampled and downsam-
pled without creating additional aliasing artifacts, even if the noise
is above the Nyquist limit of the image:∫

N(2 jx− l)K(x− i)dx = 0. (19)

The above equation describes the downsampling of random noise
N generated at resolution j ≥ 0 while the image has a resolution
of j = −1. K(x− i) is the smoothing kernel that is applied. Equa-
tion 19 evaluates to zero because the noise in higher resolutions is
orthogonal to the filter kernel. Thus N(x) has no effect on images
with a lower resolution.
Suppose a basis function φ(x) was given at an arbitrary resolution
which is called 0. We can build other functions from φ by using
linear combinations of the input:

F(x) = ∑
i

fiφ(x− i). (20)

The set of all such functions with varying fi is called the vector
space S0.Concerning noise patterns, it is important that noise on
a higher resolution enriches the space S0 such that S0 ⊂ S1. This
behavior can be enforced by choosing refinable basis functions φ

such as B-splines. If this criterion is not satisfied, noise patterns
would inconsistently change during subsequent upsampling steps,
resulting in visual artifacts.
Furthermore, all functions G(x) ∈ S1 must be representable in S0

without generating aliasing artifacts. This can be achieved by:

G(x) = G↓(x)+D(x), (21)

where G↓(x) is the approximation of G(x) that lies in S0 obtained
with least squares error minimization. D(x) contains the part of
G(x) that is unrepresentable in S0. In order to prevent aliasing,
D(x) must be orthogonal to all functions in S0. The vector space
of all functions D(x) that satisfy this constraint is called the wavelet
space W 0. If the noise function resides in the aforementioned vector
space, it won’t affect images on lower resolutions.
Using this knowledge, noise patterns can be created as follows:

1. Generate random coefficients R = (. . . ,ri, . . .).

2. Use B-spline basis functions B(x) to create R(x) ∈ S1.

3. R(x) = ∑i riB(2x− i).

4. Compute the least squares approximation R↓(x).

5. Decompose R(x) = R↓(x)+N(x) as shown in equation 21.

6. Extract N(x) = ∑i niB(2x− i).

3.2 Wavelet turbulence

The authors of [Kim et al. 2008] propose an upsampling technique
for fluid systems that relies on the results explained in section
3.1. The core idea of the paper is to solve the Navier-Stokes on a
coarse grid and subsequently add details to the simulation where
they are lost. Furthermore, temporal coherence of the newly added
frequencies is preserved and the results are synthesized into a grid
of refined size. This allows an artist to precompute the Navier-
Stokes and add fine details later during post-processing when they
are needed. Since wavelets are used, high frequency details do

not interfere with the low frequency components produced by the
solver.

The wavelet noise function N(x) is adjusted to model tur-

Figure 6: Wavelet noise N(x) on the left is used to create a turbulent
flow on the right w(x) = ∇×N(x) [Kim et al. 2008].

bulent flows as depicted in Figure 6. The model is similar to the
vorticity that was determined form the velocity u, however it can
also be computed from the noise pattern itself leading to:

w(x) =
(

∂N1

∂y
− ∂N2

∂ z
,

∂N3

∂ z
− ∂N1

∂x
,

∂N2

∂x
− ∂N3

∂y

)
. (22)

It should be noted that N(x) is designed as a scalar function, so the
authors let N1, N2 and N3 correspond to one single noise function
with an offset for each N∗. Taking partial derivatives from the
noise function does not destroy its band-limited properties as the
derivative of a function in the frequency domain is linear. The
partial derivatives are obtained by differentiating the weights of
the B-spline function B(x). Furthermore, the resulting field w(x)
retains its incompressibility.

A central concept is the property of forward scattering and
backward scattering inherent to fluids. Whenever fluids are in
motion, they generate large and small swirls that are denoted as
eddies. When larger eddies move through the velocity field, some
amount of compression and distortion leads to a break up into
smaller eddies. This type of movement is called forward scattering
and shown in Figure 7. Similarly, smaller eddies can be fused

Figure 7

together yielding the backward scattering effect. It is desirable
to detect such behavior and incorporate those fine scale effects
when they would happen on a small grid simulation. This can be
achieved with Kolmogorov’s results in fluid analysis. A velocity
field always conveys kinetic energy in each grid cell x:

e(x) =
1
2
|u(x)|2. (23)

Kolmogorov’s analysis extracts the frequency components of the
total energy et of the system at time t. The term et corresponds to
the summation of every grid cells energy. As stated previously in
section 3.1 the wavelet transform allows the retrieval of frequency
and time information and is thus computed for various scales k on

the input function et . The result is Kolmogorov’s five-thirds power
law:

et(k) =Cε
2
3 k−

5
3 , (24)

which states that within fine scale details, a decrease in kinetic en-
ergy following a slope of − 5

3 steepness can be observed. Equa-
tion 24 can be computed recursively:

et(2k) = et(k)2−
5
3 ,et(1) =Cε

2
3 . (25)

Furthermore, 23 can be combined with 25 to create another recur-
sion:

|û(x,2k))|= |û(x,k)|2−
5
6 , |û(x,1))|= 2

1
2 C

1
2 ε

2
6 , (26)

where |û(x,k)| is the spectral component of u constructed on the
frequency band k. The final wavelet turbulence function can then
be constructed:

y(x) =
imax

∑
i=imin

w(2ix)2−
5
6 (i−imin). (27)

The deviation of equation 26 would suggest that we use |û(x,2i)|
instead of w(2ix), however since we do not have the high frequency
information of u at certain bands above the Nyquist limit the noise
function w that generates the additional detail must be substituted
accordingly. In equation 27, imin and imax are used to constrain the
noise creation for a certain range of frequency bands.

Grid Expansion: As the simulation runs on coarse grid n3,
but the turbulence is computed for a fine grid N3 where N3 > n3, an
appropriate injection step needs to be defined. Simply interpolating
the coarse grid would result in a smoothed out version of the input
velocities and does not generate new turbulence, therefore the
authors suggest a model that computes the energy of the smallest
eddie et

(n
2
)

and weights the turbulence function with this term.
Additionally, turbulent eddies should only be added when forward
scattering occurs, therefore the authors make use of the energy
spectrum in et

(n
2
)

to detect such a process. If the high resolution
grid N3 is constructed, the density field can be advected on it.
Except for the turbulence addition and successive advection, the
computations are performed on the low resolution grid introducing
only minor overhead into the simulation while achieving drastic
visual improvements. In addition, the algorithm can be parallelized
because the individual steps of the extrapolation and turbulence
creation rely on local information on the grid. The authors use
OpenMP to speed up the simulation and report a performance
improve of 3.7 compared to a single core execution. Furthermore,
the technique is independent of the underlying numerical solver.

Results of Wavelet Turbulence:

4 Higher order advection solvers

Another possibility of improving visual results of the Navier-Stokes
solver is to refine the underlying numerical method. Whereas in the
previous section, artificial detail was added in a physically realistic
fashion, the presented algorithms in this section deal with the nu-
merical error that is produced by the finite resolution of an Eulerian
grid. The key is to estimate the error of the advection step and cor-
rect it. The methods in this section do not only improve the flow
locally as for example vorticity confinement, they also improve it
on a macroscopic level since the overall motion is improved due to
a smaller numerical error in the advection step.

Figure 8: Comparison of the simulation on the low resolution grid
503 (left), and the high resolution synthesis on a 4003 grid (right)
[Kim et al. 2008].

Figure 9: A wavelet turbulence simulation of smoke performed on
a 50×100×50 coarse grid, eight frequency bands where used and
synthesized into a 12800× 25600× 12800 grid. The simulation
achieved a framerate of 170s on 8 cores [Kim et al. 2008].

4.1 BFECC

BFECC is a shorthand notation for a technique called the Back and
Forth Error Correction and Compensation [Dupont and Liu 2003].
It is applied to the level set function and compensates the error in
the semi-Lagrangian advection step. The algorithm is composed of
the following steps:

1. Solve equation 18 using the semi-Lagrangian method and ob-
tain ϕ̃(x, t +∆t).

2. Solve equation 18 backward in time and denote the result as
ϕ̆(x, t).

3. Compute the error e that is introduced by the forward and
backward steps: ϕ̆(x, t) = ϕ(x, t) + 2e, e = − 1

2 (ϕ(x, t)−
ϕ̆(x, t)).

4. Solve equation 18 again with ϕ̄(x, t) = ϕ(x, t)− e being the
initial value.

The key is to incorporate the error e that is introduced by the La-
grangian method and compensate it by subtraction in the last step.
The BFECC method can be applied to the advection of velocities,
densities and level sets as described in [B. Kim 2005]. The paper
outlines that, upon employing velocity advection with the BFECC
method, physically realistic small scale fluctuations around obsta-
cles on coarse Eulerian grids can be achieved. Furthermore, rigid
body motion of objects in a fluid can be computed more accurate.
This was shown by dropping a cup into water. The object sinks
immediately into the water when the standard advection method is

applied, whereas the BFECC advection causes the cup to tumble
correctly and subsequently it sinks to the ground. The price to pay
is the additional invocation of a semi-Lagrangian solver, however
the method is still computationally cheaper than refining the grid.
In fact, the advection has a computational cost of Θ(n3) and in-
creases exponentially with n, whereas the increase in complexity
with BFECC is linear: Θ(3n3).

4.2 MacCormack Method

The MacCormack method which is described in [Selle et al. 2008],
further reduces the computational complexity of the BFECC algo-
rithm. Step 4 in the latter algorithm can be described by A(ϕ(x, t)−
e), where A denotes the semi-Lagrangian advection step. As A is
linear and e is not a quantity that needs to be advected since it does
not convey any information of ϕ , the formula can be written as
A(ϕ(x, t))+A(e) = A(ϕ(x, t))+ e. Because of the fact that we al-
ready computed A(ϕ(x, t)) = ϕ̃(x, t +∆t) in step 1, we can omit the
third advection step and only compute ϕ̃(x, t+∆t)−e. This reduces
the complexity to Θ(2n3). The result of the algorithm in figure 10

Figure 10: Results of the MacCormack advection step (right) in
comparison with the standard, semi-Lagrangian approach [Selle
et al. 2008].

emphasises the fact that much more details are preserved.

5 Spatio-Temporal Error Compensation

This method, which is described in [Zhang and Ma 2013] is
again an error compensation technique. The key difference of
this procedure in comparison to the algorithms in Section 4 is
the solver independence. There is no explicit need to employ
a linear semi-Lagrangian step. The computational overhead of
the method in comparison to a fine grid simulation that achieves
the same results is also kept small. Furthermore, it can be
applied to other algorithms that operate on a mesh, instead of a 3
dimensional grid and can be incorporated into existing fluid solvers.

The algorithm uses a coarse grid in space and time, together
with a small grid in order to identify the underlying error. This is
the first discussed technique that also considers the error involved
for larger ∆t steps. When solving 1 on a grid of size ∆x and ∆t, one
can prove that the error is of the following magnitude:

E(u,∆x,∆t) = Ex∆xkx +Et∆tkt +O(∆xkx+1,∆tkt+1). (28)

In this equation, Ex and Et depend on the solver and kx together
with kt correspond to the order of the solver. As this error exists
over the interval ∆t it has to be multiplied by this quantity yielding
E∆t, where the parameters of E have been omitted. Suppose that

the coarse grid is û0(mxi∆x,mt j∆t), where mx > 1 and mt ≥ 1 are
integers. The error during the next time step mt(j+1)∆t can then be
computed by substituting the aforementioned quantities into equa-
tion 28 and the result is:

u− û0 = E0mt∆t, (29)

where u denotes the accurate solution and û0 is the numerical so-
lution obtained from a coarse grid simulation. The same procedure
can be applied to a fine grid with mx = 1, yielding û1. The resulting
error is therefore:

u− û1 =E1mt∆t =Exmt∆xkx ∆t+Etmt∆tkt+1+O(∆xkx+1
∆t,∆tkt+2).

(30)
It is important that E0 and E1 are different since the grid spacing
differs, therefore, E0 is always bigger than E1. Equations 29 and 30
can be combined into a single equation:

u− mkx
x û1− û0

mkx
x −1

= E2. (31)

In E2, there is no occurrence of ∆xkx which means that the error
term is even smaller than E1, in addition, if mkx

x = mkt
t , the temporal

error ∆tkt also vanishes. This can be achieved by using the same
solvers for both the fine and the coarse grids. So far the procedure
looks quite promising but it can be improved further.
Concerning the fine grid, a numerical correction step can also be
employed here. Until now, only points that lie on both grids have
been considered and because mx is an integer, the coarse grid al-
ways consists of a subset of fine grid points. The missing part is the
approximation of the error term at a point that does only correspond
to the fine grid. When starting at a fine grid point (i, j), the points
where no coincidence with the coarse grid is present can be indexed
by (i+ s, j) where 0 < s < mx. At point (i, j) we have the following
error:

u− û1 = Fi, j +O(∆xkx+1
∆t,∆tkt+2). (32)

The missing error at the other points is Fi+s, j and the authors
showed that this error can be computed via interpolating the error
at (i, j) and (i+mx, j). At this point in time, all points from the fine
grid can be used for advection which will result in an improved nu-
merical solution contrarily to simply computing the fine grid points.

Simulation Steps and Performance: The simulation is per-
formed on the coarse grid and the small grid in parallel. The sizes
were chosen such that the smaller grid has two times the temporal
and spatial resolution of the bigger one. Because of this setup
there need to be 2 fine grid simulation steps for one coarse step.
Afterwards, the extrapolation and interpolation for error reduction
is performed. Concerning the performance, the algorithm is only
slightly slower than the standard simulation on the refined grid.
Figure 11 shows the duration of a single iteration employed on
both algorithms with varying grid sizes.

Implementation and Results: The authors of [Zhang and
Ma 2013] implemented the Navier-Stokes solver in NVIDIA
CUDA. The different extrapolation solvers on the grid are executed
in parallel on the CPU. The simulation was run with different
advection schemes such as semi-Lagrangian and BFECC. As
mentioned earlier, the value of the parameter kx decreases, with an
increasing order of the solver. In general, extrapolation produces
sharper density fields than normal simulation. Furthermore, differ-
ent, high frequency fluid motion patterns are recovered when kx is
small enough, for example when BFECC is used in conjunction.
The higher the value kx, the closer the result will be compared to
the standard simulation as can be observed in figure 12.
Another interesting result becomes apparent with the extrapolation

Figure 11: Performance evaluation of the Spatio-Temporal error
correction (red) versus the standard Navier-Stokes semi-Lagrangian
solver (blue) [Zhang and Ma 2013].

method as it produces more fine grained details on a 256×512 grid
than a standard simulation on a 512×1024 grid which is illustrated
in figure 13. Additionally, the authors compared the vorticity
confinement algorithm with their algorithm, since extrapolation
is capable of creating vortices in combination with BFECC.
The resulting difference is that vorticity confinement produces
stronger large scale vortices that are destroying the symmetry of
the fluid, whereas the extrapolation focuses on the overall motion
that is more consistently advected. This is due to the fact that
the extrapolation predicts the fluid behavior more precisely and
thereby improves the vorticity as well instead of just scaling it
by a certain factor. Interestingly, as the proposed algorithm is
solver-independent, it can be used in conjunction with a vorticity
confinement-based solver.

Figure 12: Comparison of different kx values for the extrapolated
simulation. From left to right kx = 1,kx = 2,kx = 3 and no extrap-
olation [Zhang and Ma 2013].

6 Particle Based Liquid Simulation

So far, the Eulerian, grid-based approach of fluid simulation has
been discussed to a large extent. There is however, another for-
malism of fluid dynamics, in particular, the Lagrangian one, where
fluids are modeled as particles and the computations are performed
on them without the use of Eulerian grid cells. The approach
in [Mercier et al. 2015] deals with such a Lagrangian viewpoint

Figure 13: Comparison of the normal simulation (in each image on
the left) and the extrapolated version (in each image on the right).
The left image is computed on a 256×512 grid, the right image on
a 512×1024 grid [Zhang and Ma 2013].

while at the same time borrowing concepts from Eulerian simu-
lations. The goal of this work is to inject turbulence into a fluid
system via wave propagation. Instead of focusing on frequency
information or numerical error approximation, the features of the
fluid surface are computed and analyzed in order to insert interest-
ing motion where it is necessary.
The simulation is performed on a set of coarse sized particles be-
fore smaller particles are introduced in a fashion that preserves
the coarse results but at the same time enriches the simulation by
adding new dynamic structures using a wave equation. What’s
more, the method does not use a mesh that is refined, it constructs
the surface out of the particles and at the same time borrows the
concepts of level-sets that were used to generate meshes conveying
the whole fluid.
The main steps of the algorithm that will be discussed thoroughly
are as follows:

1. In the surface maintenance steps, the advection of fine scale
points is computed,

2. followed by surface normal evaluation which,

3. is used to enforce smoothness constraints on the points.

4. In the wave simulation steps, the curvature of the surface is
evaluated,

5. followed by a wave seeding strategy.

Surface maintenance: A special parameter λc is defined that
allows the user some amount of control over the advection and
curvature computation steps. For the sake of readability, coarse
points positions at time n are denoted with Xn

i , while their refined
counterparts are described with an xn

i . The initial set of small
particles xi is created by uniformly sampling along spheres of
radius λc centered at each Xi. During the advection, the value
2λc is used to restrict the amount of neighboring particles Xn−1

k
that influence the advection of a certain small particle xn−1

i to the
position xn

i . The advection of the smaller particles is carried out by
averaging the positions of the coarse particles in the neighborhood
2λc.
It is important to ensure that the fine scale particles do not drift
away from their coarse counterparts, as the overall motion should
be predictable. To keep the points in a certain range, a surface
is constructed out of the set of coarse particles. Around each Xi
two implicit spheres with corresponding centers and different radii
r and R are defined where R = λc,r = R

2 . Each point xi stays
within the defined ball that corresponds to its coarse neighbor.
Using the union of all spheres as a complete surface for the fluid
makes further steps like wave propagation difficult because of
the discontinuities between neighboring spheres. Therefore, a
smoothing constraint g(f (y)) is defined for a point y that ensures
a continuous first derivative along the surface. Figure 14 describes
how the constraint is reshaping the original surface.

Figure 14: The defined surface within R and r (blue dots) is con-
strained to a continuous function (from green to red) [Mercier et al.
2015].

In order to simulate waves, the distribution of the points xi must
be improved. To achieve this goal, normals ni for each xi are
computed via fitting a plane onto the smooth surface. Each particle
is now displaced along its normal where the amount depends on
the placement of its neighbors xk in a radius λc. The idea behind
this step is to reposition outliers such that no unusual bumps occur
when the particles are fused to a common fluid surface. The
point distribution is improved by moving each xi away from their
neighbors along x′is tangent plane. In addition, points are deleted if
the density is too high, or inserted if there is not a sufficient amount
of neighbors present.

Wave Simulation: With the previous steps a scenario is cre-
ated that allows for additional turbulence propagation, the key step
in this algorithm. The idea is that waves should always form in
regions where many particles collide or separate. Such regions
can be identified by computing the mean curvature for each point.
As a tangent plane has been established previously, the value that
can be compared to mean curvature is defined as the distance of
x′is neighbors from the tangent plane of particle i and called ci. A

Figure 15: Wave seeding strategy on a high curvature region
[Mercier et al. 2015].

wave traveling along the surface will be amplified if the value of
ci is high enough. The authors first compute an amplitude ai that
depends on the mean curvature and subsequently add up multiple
cosine functions, multiplied by ai, that have a certain frequency
range provided by the user. The result of the addition is stored in si.
The algorithm then solves a wave equation with the si values added
to the height of the current wave di resulting in a new height hi
(Figure 15 middle in red). It has to be ensured that only frequencies
are displayed that actually propagate out of the wave, therefore,
hi is never displayed. Instead, di is recomputed after solving the
wave equation with hi ,by subtracting si from the newly obtained
hi. In figure 15, this behavior is displayed. The left image shows
the values hi and di without any amplification. In the middle, si is
shown after amplification together with hi. The subtraction after
solving the wave equation is shown in green on the right. The
dashed green line symbolizes the wave propagation if no additional
frequencies would have been added. As an additional step, the
authors never use the Laplace-Beltrami operator to solve the
wave equations, instead, they approximate it with a flat Laplacian
that has proven to yield more stable results. Furthermore, the
computational cost is reduced by this approximation.

Results and Performance: The authors compared their method
to a standard particle solver that does not perform upsampling
steps. Figure 16 shows a simulation with 12.5 million particles
on the left. On top of this simulation the authors generate 500000

fine surface points and apply their wave evolution strategy. It is
immediately visible that the resulting image on the right conveys
more fine structured details where the original surface has a more
smooth structure. It is remarkably that the simulation can still be
improved even if it contains a large amount of particles.
In Figure 17 a scenario is shown where the flow follows a riverbed
with obstacles in between. The standard simulation has 400000
particles and the upsampled version adds another 280000 small
scaled surface points. The amount of additional detail is immedi-
ately visible.
In Figure 18 a high resolution solver (left) with 4 million particles
is compared to the discussed algorithm operating on a lower
resolution of 2500 coarse particles and 15500 small particles. The
devised algorithm yields sharper waves and is also more efficient
to compute since the high resolution simulation took 142s/frame in
comparison to 4.74s/frame for the new method.
The authors use a hash structure for speeding up the lookups
along the neighborhood region. With this, the simulation is 200
times faster on 290000 particles in comparison to iterating over
all particles for finding neighbors. Furthermore, since most of
the computations on the surface points are independent from each
other, OpenMP is used to further accelerate the algorithm making
the affected operations 8 times faster.

Figure 16: Wave seeding strategy on a high curvature region
[Mercier et al. 2015].

Figure 17: Wave seeding strategy on a high curvature region
[Mercier et al. 2015].

Figure 18: Wave seeding strategy on a high curvature region
[Mercier et al. 2015].

7 Adaptive Simulation

The procedure in [Ando et al. 2013] tackles the upsampling prob-
lem in various ways. As discussed, using a uniform, Eulerian grid,
is infeasible since it cannot focus on interesting motion and resolve
it in more detail while at the same time wasting computational
resources at places where the fluid motion is uninteresting and
the calculations could be performed more coarsely. The authors
therefore devised a solver which operates on a tetrahedral mesh.
This structure is adaptively refined, depending on where interesting
motion occurs. The algorithm is of hybrid nature, meaning that
it still follows an Eulerian approach because the pressure and
velocity is stored on the tetrahedral cells, but at the same time
it uses particles from which a surface is computed. In the past,
similar methods have been established using octrees, however, the
authors in [Ando et al. 2013] denote that this approach still suffers
from numerical errors and tetrahedral meshes are superior.

Fluid Solver: On each triangle of the mesh, a 3 dimensional
velocity vector is stored at the cells center and a pressure value
is stored on each vertex of the triangle. This setup allows the
computation of the Poisson projection step modeled in equation 11
in an efficient and robust fashion. The energy minimization of
the Poisson equation is modeled as a linear m× n system, where
m is the number of tetrahedra and n is the number of nodes. As
the number of nodes is always smaller than n, this system can
be solved fast and without artifacts. Artifacts appear when more
degrees of freedom for the pressure values are possible than for the
velocities. By construction, this method prevents such a scenario
as the authors claim, although a formal proof has not been given.
Similar to [Mercier et al. 2015], the algorithm employs a position
correction step where particles are moved away from its neighbors
along the tangential direction of the surface. In order to prevent
holes by using this correction, particles that lie underneath the
surface will also be pushed towards the boundary of the surface,
filling up empty space left behind. As an additional improvement,
particles that move freely in space outside of the fluids boundary
(for example, when splashes occur) will be excluded from the
pressure solver and only gravitational forces are then applied to
them as there are zero internal forces present in such cases.

Adaptivity: The adaptive component in the simulation is the
tetrahedral mesh, which is recomputed every 10 time steps.
The establishment of a tetrahedral mesh follows the algorithm
from [Labelle and Shewchuk 2007]. During the recomputation
of the mesh, all particles are inspected individually and it is
determined whether they are either to big or too small. A particle
is merged with a neighbor if it is too small. In the opposite case, a
particle will be split and two new particles are formed in a way that
tries to fill the gaps between their neighbors.
The crucial step is to determine when a split or merge operation
needs to occur. To determine this, a special sizing function has
been devised:

S(x) = max(d(x),V (x,min(κliquid(x),κsolid(x),e(x)))). (33)

In this equation, d(x) is the distance of the particle from the surface
of the wave. Motion near the surface must be modeled more pre-
cisely than motion farther below. V (x,y) is a function that returns
y if the point is inside the view frustum, otherwise, the result is the
maximum allowed particle radius. The value y results form 3 dif-
ferent computations. The curvature is represented by κliquid(x), the
higher this value, the smaller the particle radius should be and vice
versa. The distance to the nearest solid object is smoothly evaluated

by κsolid(x) with respect to the maximum radius:

κsolid(x) = 1.6

(
(1−‖dsolid‖2)

r2
max

)3

, (34)

where dsolid is the distance to the solid object and rmax is the
maximum radius. The idea is that particles near the solid object
must be modeled more fine grained. The function e(x) evaluates
the strain tensor of the velocity field. This tensor describes the rate
of change in velocities around a certain point and therefore conveys
information about parts in the flow that convey interesting motion.

Surface Representation: The authors also propose a new
method for representing the surface. This is necessary as previous
methods can not handle many particles with such an ample
difference in their radii. The final displayed surface is composed
of the union of convex hulls that are formed by 3 neighboring
particles that are close to the surface border. For the convex
hull candidates, only particles that are lesser than l times the
sum of the surface points and its neighbors radius apart are
considered. A small l allows for the depiction of more details,
that might be too bumpy and a large l smooths out concavities.
The authors used l = 2 for most of their simulations, the convex
hull of three particles is shown in Figure. After the surface has
been established, the level set value from each vertex in the
mesh is then computed. The resulting surface however, is ex-
pensive to compute with an average runtime of 5 minutes per frame.

Results and Performance: The most remarkable result of
this algorithm can be analyzed in Figure 19, where a scene is
depicted that would be difficult to compute with a standard solver.
The fine details that occur within the splashes could otherwise
only be achieved with a very fine grid. The authors note that a
resolution of 400 million particles would have been needed to
obtain the same accuracy as they achieved on the finest level of
adaptivity. In comparison their method used 1.7 million particles,
small scale details can be captured because of the sizing function.
On average, the simulation took 4.6 seconds per frame, although
it is presumed that the authors left out the time for the surface
computation otherwise they would contradict themselves. In
figure 20, another scene is shown that demonstrates the adaptivity
of the method. The complex obstacle in the middle creates various
amounts of distortion in the flow and the method is able to capture
this by refining the particle size in regions around the obstacle.
Regarding possible performance improvements, the authors state
that the mesh generation also poses a performance bottleneck in
their simulations as it can not parallelized. Further drawbacks are
the configuration of the sizing function. There are constants that
are not optimized perfectly and artifacts can occur in small areas
when particle sizes vary too much. Furthermore, their method is
not proven to behave correctly when viscosity and diffusion is
modeled and the authors note that difficulties could arise in these
cases. The repositioning of particles is also not entirely physically
accurate but a necessity as a configuration could result that has
more particles in a certain area than velocity samples in the grid.
This would also lead to artifacts.

8 Comparison and Conclusion

In summary, all methods that have been discussed in detail try to
improve fluid simulations on some level. The wavelet turbulence
method, together with vorticity confinement add motion to a fluid
in a procedural fashion that is not entirely physically accurate but

Figure 19: A scene that is difficult to evaluate precisely with non
adaptive simulations because highly detailed splashes occur when
the objects begin to flow and drop into the water [Ando et al. 2013].

Figure 20: This scene depicts a obstacle with small an big holes that
create small scale splashes and swirling motions when the water
flows through it. Therefore an adaptive simulation that refines the
resolution in this area is beneficial [Ando et al. 2013].

yields convincing visual results. In contrast, the higher order ad-
vection solvers together with the spatio-temporal method provide
a purely numerical refinement that is closer to physical reality but
the freedom of finetuning certain parameters may not be as pleas-
ing. The hybrid approaches try to combine Eulerian and Lagrangian
simulations and also apply some regularizations that have no real
physical meaning, nevertheless they are also able to achieve a con-
vincing amount of added small scale detail. The approaches all
have their benefits and drawbacks, it is crucial to understand that
different scenarios require different techniques. Each technique of-
fers a huge amount of improvement compared to non-upsampling
standard solvers, both in computational complexity as well as in the
visual results that can be achieved.

8.1 Comparison of the Particle Based Solvers

Concerning the Particle-based solvers, the adaptive simulation
might present superior simulations, while the Surface turbulence
method might not be able to model fine details as accurate. When
concerning the performance, the latter approach might be more con-
venient for artists. The authors mention that the framerate, even
on complex scenes is always below 1 minute, this superiority in
comparison with the adaptive simulation allows for a more rapid
development process, which might be favored by artists. After a
preferred scene has been established, one can choose to refine the
simulation by employing the adaptive solver. It should also be noted
that the adaptive version might not be able to simulate small waves

in areas that are underresolved because the sizing function does
not refine certain areas that are determined to convey little activ-
ity. When analyzing the right image in figure 18 small turbulent
waves are simulated in areas that have only minor curvatures, the
highly adaptive version might not be able to capture such details
and is certainly not able to simulate additional waves.

8.2 Comparison of Particle Based solvers and
Wavelet turbulence

Because of the wave seeding strategy the approach in [Mercier et al.
2015] can be compared to the wavelet turbulence algorithm [Kim
et al. 2008]. Both methods inject turbulence at certain frequency
bands, it is however not known how the simulation in [Mercier
et al. 2015] behaves on scenarios where the motion of smoke is
modeled. According to [Stam 2003], particle based methods are
not able to capture the fine grained motions of smoke without using
many particles. Because [Mercier et al. 2015] uses coarse parti-
cles as the underlying starting point for further refinement, the size
of those particles might pose a restriction on the amount of fine
grained turbulence in smoke simulations as for example in figure 9.
Therefore, the method of choice when computing smoke simula-
tions would be the wavelet turbulence approach, the higher order
advection solvers or the spatio-temporal extrapolation method. It is
not known whether the adaptive simulation on tetrahedral meshes
is superior to the wavelet turbulence algorithm or not. The authors
state that the applicability of the method with regards to smoke sim-
ulation is still a topic of further research. However, similar con-
clusions as mentioned above can be drawn. Although the parti-
cle size is refined in areas of interesting motion it is not clear if
the adaption can correctly consider forward and backward scatter-
ing effects. It would be interesting to employ an adaptive wavelet
turbulence sceme where the application refines a mesh based com-
putation upon the detection of scattering effects. Furthermore, the
wavelet turbulence method is not able to exactly reproduce simula-
tions on very high resolution grids. Similar to the surface turbulence
approach, the wavelet turbulence results are dependent on the low
resolution simulations when obstacles are within the flow.

8.3 Comparison of Wavelet turbulence with numer-
ical error correction based solvers

The wavelet turbulence method might allow more freedom when
designing simulations, because the number of frequency bands that
are added can be defined manually, depending on the needs of the
artist. Simulations that focus solely on the improvement of numer-
ical error terms such as BFECC, the MacCormack method and also
the Spatio-Temporal extrapolation will always produce the same re-
sult. Still these approaches are highly valuable when there is need
for physical accuracy since they do not add additional turbulence
which is not entirely physically accurate. Such scenarios could
be wind tunnel simulations for example. In addition, algorithms
that focus on numerical improvements can be combined in order to
achieve an even better result in a satisfactorily amount of time as
discussed in [Zhang and Ma 2013].

References

ANDO, R., THÜREY, N., AND WOJTAN, C. 2013. Highly adaptive
liquid simulations on tetrahedral meshes. ACM Transactions on
Graphics (TOG) 32, 4, 103.

B. KIM, Y. LIU, I. L. J. R. 2005. Flowfixer: Using bfecc for fluid
simulation. In Proceedings of the Eurographics Work shop on
Natural Phenomena.

COHEN, L. 1995. Time-frequency Analysis: Theory and Applica-
tions. Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

COOK, R. L., AND DEROSE, T. 2005. Wavelet noise. ACM Trans.
Graph. 24, 3 (July), 803–811.

DUPONT, T. F., AND LIU, Y. 2003. Back and forth error com-
pensation and correction methods for removing errors induced
by uneven gradients of the level set function. Journal of Compu-
tational Physics 190, 1, 311–324.

FEDKIW, R., STAM, J., AND JENSEN, H. W. 2001. Visual simu-
lation of smoke. In Proceedings of the 28th Annual Conference
on Computer Graphics and Interactive Techniques, ACM, New
York, NY, USA, SIGGRAPH ’01, 15–22.

KIM, T., THÜREY, N., JAMES, D., AND GROSS, M. 2008.
Wavelet turbulence for fluid simulation. In ACM Transactions
on Graphics (TOG), vol. 27, ACM, 50.

LABELLE, F., AND SHEWCHUK, J. R. 2007. Isosurface stuffing:
Fast tetrahedral meshes with good dihedral angles. ACM Trans-
actions on Graphics 26, 3 (July), 57.1–57.10. Special issue on
Proceedings of SIGGRAPH 2007.

MERCIER, O., BEAUCHEMIN, C., THUEREY, N., KIM, T., AND
NOWROUZEZAHRAI, D. 2015. Surface turbulence for particle-
based liquid simulations. ACM Transactions on Graphics (Pro-
ceedings of ACM SIGGRAPH Asia 2015) 34, 6 (Nov.).

PERLIN, K., AND VELHO, L. 1995. Live paint: Painting with pro-
cedural multiscale textures. In Proceedings of the 22Nd Annual
Conference on Computer Graphics and Interactive Techniques,
ACM, New York, NY, USA, SIGGRAPH ’95, 153–160.

SELLE, A., FEDKIW, R., KIM, B., LIU, Y., AND ROSSIGNAC, J.
2008. An unconditionally stable maccormack method. Journal
of Scientific Computing 35, 2-3, 350–371.

STAM, J. 1999. Stable fluids. In Proceedings of the 26th An-
nual Conference on Computer Graphics and Interactive Tech-
niques, ACM Press/Addison-Wesley Publishing Co., New York,
NY, USA, SIGGRAPH ’99, 121–128.

STAM, J. 2003. Real-time fluid dynamics for games. In Proceed-
ings of the game developer conference, vol. 18, 25.

ZHANG, Y., AND MA, K.-L. 2013. Spatio-temporal extrapolation
for fluid animation. ACM Transactions on Graphics (TOG) 32,
6, 183.

ZSOLNAI, K., AND SZIRMAY-KALOS, L. Real-time simulation
and control of newtonian fluids using the navier-stokes equa-
tions.

	Introduction
	Basic concepts of fluid dynamics
	The Navier-Stokes equations
	Enforcing the Incompressibility Condition
	Vorticity Confinement
	Solving the Navier-Stokes on a Finite Eulerian Grid

	Frequency-Based Upsampling
	Wavelet Noise and Wavelet Theory
	Wavelet turbulence

	Higher order advection solvers
	BFECC
	MacCormack Method

	Spatio-Temporal Error Compensation
	Particle Based Liquid Simulation
	Adaptive Simulation
	Comparison and Conclusion
	Comparison of the Particle Based Solvers
	Comparison of Particle Based solvers and Wavelet turbulence
	Comparison of Wavelet turbulence with numerical error correction based solvers

