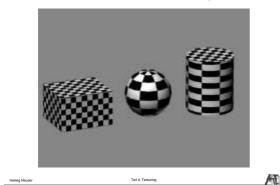
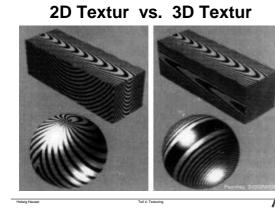

Teil 4: Texturing Farbe, Struktur, Umgebung Tel 4 Tenning Wozu?

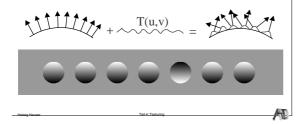
* * *	Textur: Farbe Oberflächenstruktur Reflexion, Transparenz Highlights	
- Halwig Hauser	Tell 4 Technico	


Textur – was ist das?			
Textur = Eigenschaft, separat definiert			
2D Textur: wie Aufdruck (Tapete)	Textur		
 3D Textur: innere Struktur (Holz) 	(x,y,z) $\stackrel{\text{2D}}{\longleftrightarrow}$ (u,v)		
Textur wird in Texturraum definiert			
Aufbringung per Parametrisierung	3D (u,v,w)		
Helwig Hauser Teil 4: Texts	uring		

2D Texturen – Beispiel


Sold Texturing

3D Textur: innere Struktur Texturing: wie Ausschneiden


Solid Texturing – mehr Beispiele

Bump Mapping

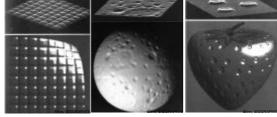
Bump Mapping =

- ◆ Vortäuschen von geometrischen Details
- ◆ Normalvektorvariation per Textur

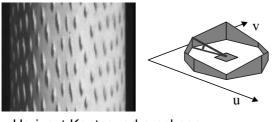
Bump Mapping (2)

Bump Mapping =

- ♦ Vermeidung von viel Geometrie
- Normale verwackeln



4


Bump Mapping — Beispiel Normale Textur Bump Mapping Unterschied: Shading → 3D Eindruck

Bump Mapping – mehr Beispiele

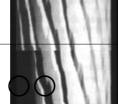
Problem: Trick sichtbar am Rand! Problem: Bumps haben keine Schatten!

Abhilfe: Horizon Mapping Schatten von bumps vortäuschen!

Horizon Mapping – Beispiel

Unterschied zu Bump Mapping:

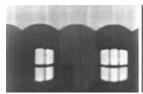
- Bumps haben Schatten
- Bumps liegen im Schatten



Helwig Hauser

iring

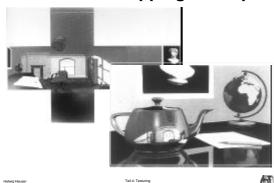
Horizon Mapping - Vergleich



Holwig Hauser Tell 4: Texturing

Environment Mapping

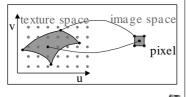
Statt komplexer Szene: Umgebung per Textur simulieren



Helwig Hauser

6-Seiten Maps, Kugel-Maps **Umgebung wird zuerst auf Textur** abgebildet. Kugelförmige Map Wenn Kugel groß: Speicherung in Polarkoordinaten Abruf nur per Richtung **Environment Map – Prefiltern** Wenn Objekte scharf reflektieren: ◆ 1:1 Environment map = o.k. Bei diffusen Oberflächen: ◆ Zuerst: Preprocessing (low pass) ◆ Evaluation in Richtung der Flächennormale

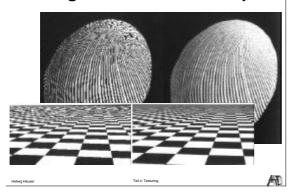
Environment Mapping – Beispiel



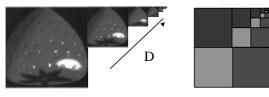
Aliasing-Probleme mit Texturen

Parametrisierung nicht flächentreu!

Unterschiedlich viel Textur pro Pixel


Anti-Aliasing von Texturen

In Verwendung: Annäherungen:


- convolution on demand
- pre-filtering

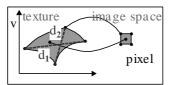
Aliasing mit Texturen – Beispiele

Mip-Mapping

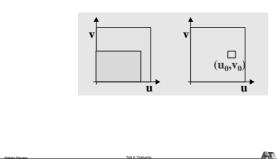
Verschiedene Auflösungen vorberechnet Drei Farben: effiziente Speicherung

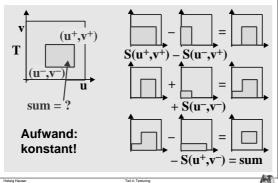
Mip: multum in parvo

Mip Mapping - Beispiel


Je nach Verzerrungsverhältnis, wird die entsprechende Textur gewählt.

Mip Mapping – Interpolation


2^D = max(d₁,d₂) D: Texturebene Beispiel: D=2.3


T₀ = Texturwert aus Ebene trunc(D)T₁ = Texturwert aus Ebene trunc(D)+1Ergebniswert: lineare Interpolation

Holkig Hauser Teil 4- Texturing

Summed Area Table Summen speichern statt Texturwerte:

Summed Area Table - Evaluieren

Anti-Aliasing von Texturen – Bsp.	
cori cs	
esri ci	
isri d	
Sycanoscari	
ricev csri	
ricsricsri	