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Fig. 1. Our system opens up the possibility of rapid mass-scale material synthesis for novice and expert users alike. This method takes a set of user preferences
as an input and recommends relevant new materials from the learned distributions. On the left, we populated a scene with metals and minerals, translucent,
glittery and glassy materials, each of which was learned and synthesized via our proposed technique. The image on the right showcases rich material variations
for more than a hundred synthesized materials and objects for the vegetation of the planet. The learning and recommendation steps take less than a minute.

We present a learning-based system for rapid mass-scale material synthesis

that is useful for novice and expert users alike. The user preferences are

learned via Gaussian Process Regression and can be easily sampled for new

recommendations. Typically, each recommendation takes 40-60 seconds to

render with global illumination, which makes this process impracticable

for real-world workflows. Our neural network eliminates this bottleneck

by providing high-quality image predictions in real time, after which it is

possible to pick the desired materials from a gallery and assign them to a

scene in an intuitive manner. Workflow timings against Disney’s “principled”

shader reveal that our system scaleswell with the number of soughtmaterials,
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thus empowering even novice users to generate hundreds of high-quality

material models without any expertise inmaterial modeling. Similarly, expert

users experience a significant decrease in the total modeling time when

populating a scene with materials. Furthermore, our proposed solution

also offers controllable recommendations and a novel latent space variant

generation step to enable the real-time fine-tuning of materials without

requiring any domain expertise.
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1 INTRODUCTION
Light transport simulations are the industry standard way to cre-

ate high-quality photorealistic imagery. This class of techniques
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Fig. 2. Glassy materials learned and synthesized by our technique using
150 training samples, 46 of which obtained a score greater than zero.

enjoys a variety of use in architectural visualization, computer ani-

mation, and is rapidly becoming the choice of many mass media and

entertainment companies to create their feature-length films. Be-

yond using physically accurate algorithms, the presence of complex

material models and high-resolution geometry are also important

factors in creating convincing imagery. Choosing the perfect mate-

rial models is a labor-intensive process where an artist has to resort

to trial and error, where each try is followed by the lengthy pro-

cess of rendering a new image. In this work, we focus on providing

tools for rapid mass-scale material synthesis to ease this process

for novice and expert users alike – Figures 2 and 3 showcase ex-

ample scenes where our technique was used to learn glassy and

translucent materials. Instead of using a set of specialized shaders

for each desired material class, it is generally possible to design

one expressive shader that can represent a large swath of possible

material models at the cost of increased complexity, which is often

referred to as a “principled” or “uber” shader in the rendering com-

munity. Each parameterization of such a shader corresponds to one

material model. Our strategy is to create a principled shader that is

highly expressive, where the complexity downside is alleviated by

the fact that the user never has to directly interact with it. To achieve

this, we harness the power of three learning algorithms and show

that this approach has several advantages compared to the classical

workflow (i.e., direct interaction with a “principled” shader): when

using our framework, the user is presented with a gallery where

scores can be assigned to a set of proposed material models. These

scores are used as training samples to adapt to these preferences

and create newmaterial recommendations. These recommendations

are controllable, i.e., the user can choose the amount of desired va-

riety in the output distribution, and our system retains the degree

of physical correctness of its underlying shader. Normally, each of

these new recommendations would have to be rendered via global

illumination, leading to long waiting times. To alleviate this, we

have replaced the renderer with a neural network that is able to

predict these images in real time. We use a third learning algorithm

to perform variant generation, which enables the user to fine-tune

previously recommended materials to their liking in real time with-

out requiring any domain expertise.

Furthermore, we explore combinations of these learning algo-

rithms that offer useful real-time previews and color coding schemes

to guide the user’s attention to regions that are ample in variants

with a high expected score and are also deemed similar to the fine-

tuned input. We also show that our framework scales well with the

number of sought materials and that it offers favorable modeling

times compared to the classical workflow.

In summary, we present the following contributions:

• a framework for mass-scale material learning and recom-

mendation that works with any high-dimensional principled

shader,

• a Convolutional Neural Network to enable the visualization

of the recommended materials in real time,

• a latent space variant generation technique that helps the

user to intuitively fine-tune the recommended materials in

real time,

• a novel way to combine all three learning algorithms to pro-

vide color coding for efficient latent-space exploration and

real-time previews.

We provide our pre-trained neural network and the source code

for the entirety of this project.

2 PREVIOUS WORK
Material modeling. Many material modeling workflows start with

an acquisition step where a real-world material is to be measured

with strobes and turntables [Miyashita et al. 2016], screens and

cameras [Aittala et al. 2013] or other equipment to obtain a digital

version of it that mimics its reflectance properties. Most learning-

based techniques focus on reconstructing real-life material models

with an SVBRDF
1
model from a flash and one no-flash image pair

[Aittala et al. 2015], or remarkably, even from one input photo [Ait-

tala et al. 2016]. In this work, we focus on a different direction where

no physical access to the sought materials or additional equipment

is required. Previous database-driven methods contain acquired

data for a vast number of possible materials to populate a scene,

however, they are typically very sizable and either cannot produce

new materials on the fly [Bell et al. 2013], or are lacking in more

sophisticated material representations (e.g., BSSRDFs
2
) [Matusik

2003].

A different class of methods focuses on directly editing BRDF

models within a scene [Ben-Artzi et al. 2006; Cheslack-Postava et al.

2008; Sun et al. 2007], where a typical use-case includes a user

populating a scene with one material at a time. Recent studies have

also shown that designing intuitive control interfaces for material

1
Spatially Varying Bidirectional Reflectance Distribution Function

2
Bidirectional Subsurface Scattering Reflectance Distribution Function
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Fig. 3. This scene was generated using our automatic workflow. The recommendations of our system are controllable, i.e., the user can easily adjust the
recommendation thresholds to fine-tune the amount of variety in the output distribution.

manipulation is non-trivial [Kerr and Pellacini 2010; Serrano et al.

2016]. To alleviate this, our framework does not expose any BSDF

parameters to the user, but learns the user preferences directly and

is able to rapidly recommend desirable material models on a mass

scale. Chen et al.’s work [2015] operates similarly by populating a

scene with materials based on an input color scheme. We expect that

this, along with other recent color mixing methods (e.g., Shugrina

et al.’s work [2017]) can be combined with our proposed technique

to enhance the process of assigning a collection of materials to a

scene.

Neural networks and rendering. The recent resurgence of neural
network-based learning techniques stimulated a large body of re-

search works in photorealistic rendering. A class of techniques uses

neural networks to approximate a selected aspect of light transport

such as indirect illumination [Ren et al. 2013] or participating me-

dia [Kallweit et al. 2017]. To extend these endeavors, other works

can be used to perform other related tasks, such as approximating

sky models [Satỳlmỳs et al. 2017] or Monte Carlo noise filtering

[Kalantari et al. 2015]. There is also a growing interest in replacing

a greater feature set of the renderer with learning algorithms [Nal-

bach et al. 2017], which typically requires the presence of additional

information, e.g., a number of auxiliary buffers. In our problem

formulation, we are interested in a restricted version of this prob-

lem where geometry, lighting, and the camera setup are fixed and

the BSDF parameters are subject to change. We show that in this

case, it is possible to replace the entirety of the renderer without a

noticeable loss of visual quality.

GPR, GPLVM. Gaussian Process Regression (GPR) is an effective

learning method where prior knowledge of a problem can be har-

nessed via a covariance function, enabling high-quality regression

using a modest amount of training samples. It offers useful solu-

tions in the perimeter of computer graphics and machine learning –

examples include performing super resolution [He and Siu 2011], an-

alyzing and generating dynamical models for human motion [Wang

et al. 2008], or synthesizing doodles and ocean waves [Anjyo and

Lewis 2011]. Generative latent-space techniques proved to be highly

useful in a variety of areas: they are able to design new fonts by

using the Gaussian Process Latent Variable Model (GPLVM) to find

low-dimensional structures in high-dimensional data and expose

them to the user [Campbell and Kautz 2014], generate imaginary

human faces and perform meaningful algebraic operations between

them [Bojanowski et al. 2017], synthesize new shapes when given a

database of examples [Averkiou et al. 2014], or suggest a selection of

perceptually different parameter choices [Koyama et al. 2014; Marks

et al. 1997]. It is clear that these methods are powerful tools in isola-

tion – in this work, we show a novel combination of GPR, GPLVM

and a Convolutional Neural Network that opens up the possibility

of learning the material preferences of a user and offering a 2D

latent space where the real-time fine-tuning of the recommended

materials is possible.
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Fig. 4. In the first step, the user is presented with a gallery and scores the shown materials according to their taste. Then, a regression is performed to
obtain a preference function via Gaussian Process Regression, which can be efficiently sampled for arbitrarily many new material recommendations. These
recommendations can be visualized in real time using our neural network in a way that closely resembles the images rendered with global illumination. In the
final step, the recommended materials can be conveniently assigned to an existing scene.

3 OVERVIEW
The overall workflow of our system consists of two stages (see also

Fig. 4). In the first stage, the user is presented with a gallery and

asked to assign scores to the shown materials. After choosing a

threshold value to control the variability of the output, a set of rec-

ommendations are computed (Section 4.1) and visualized via neural

rendering (Section 4.2). The recommendations depend entirely on

the user scores and may span multiple material classes. If the user

wishes to fine-tune a subset of the recommended materials, a latent

space is inferred for low-dimensional exploration (Section 4.3). The

user then evaluates the result:

(1) If the recommendations are acceptable – proceed to the next

stage,

(2) If the recommendations need refinement – assign scores to the

newly proposed gallery or adjust past rankings and compute a

new round of recommendations.

In the second stage, the user can choose from two ways to assign

the recommended materials to a scene:

(1) Automatic workflow – randomly assign the materials to the

selected objects in the scene (Figures 1 (right) and 3). This

is ideal for mass-scale material synthesis, when hundreds of

materials are sought,

(2) Assisted workflow – assign the materials to the scene manu-

ally and perform fine-tuning via variant generation (Section

5.2), with color coding (Section 5.1). This is ideal when up to a

few tens of materials are sought and strict control is required

over the output (Figures 1 (left) and 9).

The final scene with the newly assigned material models is then to

be rendered offline. In Section 4 we first present the three learning

algorithms, which can be used for the automatic workflow by them-

selves, while in Section 5 we show how to combine them to provide

an interactive system.

4 LEARNING ALGORITHMS FOR MATERIAL SYNTHESIS
In this section, we outline the three main pillars of our system:

Gaussian Process Regression to perform material learning and

recommendation, a Convolutional Neural Network variant for

real-time image prediction, and theGaussian Process Latent Vari-
able Model to embed our high-dimensional shader inputs into a 2D

latent space to enable the fine-tuning of a select set of recommended

materials (Fig. 5). Table 1 summarizes the notation used throughout

the paper.

4.1 Material Learning and Recommendation
In this section, we propose a combination of Gaussian Process Re-

gression, Automatic Relevance Determination and Resilient Back-

propagation to efficiently perform material learning and recom-

mendation. We also show that these recommendations are easily

controllable.

Material learning. Gaussian Process Regression (GPR) is a kernel-

based Bayesian regression technique that leverages prior knowledge

to perform high-quality regression from a low number of samples
3
.

It can be used to approximate a preference function u (x) from a

discrete set of n observations U =
[
u (x1),u (x2), . . . ,u (xn )

]T
, each

of which can be imagined as point samples of a Gaussian where

xi ∈ Rm
encode the parameters that yield a BSDF model. We

created a parameter space similar to Disney’s “principled shader”

[Burley and Studios 2012] that comes in two versions: them = 19

variant spans the most commonly used materials, i.e., a combination

of diffuse, specular, glossy, transparent and translucent materials

where the extended m = 38 version additionally supports proce-

durally textured albedos and displacements (see Section 6 and the

supplementary materials). A Gaussian Process is given by its mean

3
Throughout this manuscript, we will use the terms samples and observations
interchangeably.
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Fig. 5. A high-level overview of our pipeline: GPR is used to learn the
user-specified material preferences and recommend new materials which
are subsequently visualized using our Convolutional Neural Network. Op-
tionally, GPLVM can be used to provide an intuitive 2D space for variant
generation.

and covariance k (x, x′) that describes the relation between individ-

ual material samples x and x′. A squared exponential covariance

function is given as

k (x, x′) = σ 2f exp


−

(x − x′)2

2l2


+ β−1δxx ′ , (1)

with a given σ 2f variance and length scale l where β−1δxx ′ is an

additional noise term enabled by the Kronecker delta to yield a

positive definite covariance matrix. This means that a highly cor-

related pair
x − x′ ≈ 0 yields the maximum of the function, i.e.,

k (x, x′) ≈ σ 2f +β
−1δxx ′ , leading to a smooth function approximation

as u (x) ≈ u (x′). Conversely, if x − x′ is large, the two observa-

tions show negligible correlation, therefore for a rapidly decaying

covariance function, k (x, x′) ≈ 0.

The covariance matrix K is given by all possible combinations of

the point samples

K =



k (x1, x1) k (x1, x2) . . . k (x1, xn )
k (x2, x1) k (x2, x2) . . . k (x2, xn )
...

...
. . .

...

k (xn , x1) k (xn , x2) . . . k (xn , xn )



, (2)

the diagonal of K is therefore always σ 2f + β
−1δxx ′ . The covariances

for the unknown sample x∗ are written as

k∗ =
[
k (x∗,x1),k (x∗,x2), . . . ,k (x∗,xn )

]T
, (3)

Symbol Description Type

x BSDF description Vector

u∗ (x) Preference function (Ground truth) Scalar

u (x) Preference function (GPR prediction) Scalar

n Number of GPR samples Scalar

x∗ Unknown BSDF test input Vector

U GPR training set Matrix

m Input BSDF dimensionality Scalar

k (x, x′) Covariance function Scalar

σ 2f Variance Scalar

l Length scale Scalar

β−1 Noise term Scalar

δxx ′ Kronecker delta Scalar

K GPR covariance matrix Matrix

θ Covariance function parameterization Vector

α Learning rate Vector

ϕ (x∗) CNN image prediction of a BSDF Matrix

X GPLVM training set Matrix

L Low dimensional latent descriptor Matrix

l Latent space dimensionality Scalar

N (x | µ,σ 2) 1√
2πσ 2

exp(−
(x−µ )2

2σ 2
) Scalar

z Number of GPLVM samples Scalar

K
′

GPLVM covariance matrix Matrix

ψ (l∗) Mapping from latent to observed space Vector

m(x) 1

2
(u (x) + u∗ (x)) Scalar

τ Recommendation threshold Scalar

r Grid resolution Scalar

s (x∗, x′) Similarity (CNN prediction) Scalar

u (x′) Preference score (GPR prediction) Scalar

Table 1. Notation used throughout this paper, in order of occurrence.

(where xi ∈x∗) and k∗∗ = k (x∗, x∗). We define a zero-mean Gaussian

Process over

[
U,u (x∗)

]T
with the covariance function k (x, x′):

[
U

u (x∗)

]
∼ N *

,
0,

[
K kT∗
k∗ k∗∗

]
+
-
. (4)

We seek u (x∗) leaning on the knowledge that the conditional

probability P (u (x∗) | U) follows a Gaussian distribution, therefore

the closed-form solution for u (x∗) and its variance is obtained by

u (x∗) = kT∗ K
−1U,

σ (u (x∗)) = k∗∗ − k∗K−1kT∗ . (5)

The quality of the regression depends on the choice and the param-

eterization of the covariance function. If θ = {σ 2f , l } in (1) is chosen

poorly, the result will suffer from severe over- or underfitting. To

avoid this, a model selection step is performed to maximize the

log-likelihood of the observed samples by choosing the appropriate

ACM Transactions on Graphics, Vol. 37, No. 4, Article 76. Publication date: August 2018.
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hyperparameters, i.e.,

log P
(
U|x,θ

)
= −

1

2

UTK−1U −
1

2

log |K| −
n

2

log 2π . (6)

The derivatives of the log-likelihood with respect to the hyperpa-

rameters and a learning rate α are given by

∂

∂θ j
log P

(
U|x,θ

)
= −

1

2

tr




(
ααTK−1

) ∂K
∂θ j



, (7)

which can be used with gradient-based optimization techniques.

In some cases, the user is looking for a class of material models

where, for instance, the surface reflectance properties are of great

importance and the choice of albedos is irrelevant (e.g., carpaint

material variants). In this case, using one fixed length scale for all

features leads to poor predictions. To this end, we have also used

Automatic Relevance Determination [MacKay 1996; Neal 2012] and

assigned a θ to each dimension (with appropriate modifications to

(1)) to open up the possibility of discarding potentially irrelevant

features. However, this substantially increases the dimensionality of

the optimization problem, to a point where classical methods such

as L-BFGS-B [Byrd et al. 1995] and the Scaled Conjugate Gradient

method [Møller 1993] prove to be ineffective: lower learning rates

are theoretically able to find the desired minima, but slow down

considerably in shallow regionswhile larger learning rates introduce

oscillation near the minima. To this end, instead of using a fixed step

size that is proportional to the local gradient, we adapt the learning

rate based on the topology of the error function by using Resilient

Backpropagation [Blum and Riedmiller 2013; Riedmiller and Braun

1992], a technique originally designed for training neural networks.

This significantly reduces the number of required learning steps and

has always succeeded finding usable minima in our experiments.

Material recommendation. Given enough learning samples, u will

resemble the true user preferences, therefore high-scoring material

recommendations can be obtained by simply rejection-sampling it

against a minimum acceptable score threshold. The rejection rates

depend on the properties of u: choosing a high threshold will result

in high-quality recommendations at the cost of higher rejection

rates and decreased variety. Conversely, a larger variety of recom-

mendations can be enforced by lowering the target threshold. Upon

encountering a rejection ratio that is unacceptably high, we extend

the rejection sampler with a low number of stochastic hillclimbing

steps. This offers a considerably improved ratio at the cost of a

minimal increase in sample correlation. Generally, we have found

setting the recommendation threshold between 40% and 70% of

the maximum possible score to be a good tradeoff between sample

quality and variety (Fig. 3, higher quality (left) – 70%, more variety

(right) – 40%).

4.2 Neural Networks and Rendering
After the learning and recommendation step have taken place, a

gallery is generated with a prescribed amount of recommendations.

The GPR and the recommendation steps take only a few seconds

(Table 3), however, rendering all 300 recommendations (a typical

number throughout our experiments) would take over 4 hours,

which is a prohibitively long time for practical use. To cut down the

time between the two steps, we introduce a neural network-based

Fig. 6. Our decoder network takes the shader description as an input and
predicts its appearance. Due to the fact that we have an atypical problem
where the input shader dimensionality is orders of magnitude smaller than
the output, the input signal is subjected to a series of 1D convolution and
upsampling steps.

solution. Deep neural networks are universal function approxima-

tors that have proven to be remarkably useful for classification

and regression problems. Typically, the dimensionality of the input

is orders of magnitude larger than that of the output (e.g., image

classification). Convolutional Neural Networks [LeCun et al. 1998]

(CNNs) excel at solving problems of this form; their advantages in-

clude augmenting neurons with a receptive field to take advantage

of the locality of information in images and their pooling operations

that reduce the number of parameters in each layer. In this work, we

are concerned with an atypical adjoint problem where images are

to be predicted pixel by pixel from the shader input, ϕ : Rm→Rp
,

where the input dimensionalitym is in the order of tens, which is

to be mapped to an output of p dimensions, which represents the

largest possible output that fits into the GPU memory along with

its decoder network, i.e., in our case, a 410
2
image with three color

channels. We will refer to problems of this kind as neural rendering.
Neural rendering remains an unsolved problem in general. How-

ever, as our case is constrained to material modeling, the geometry

and lighting setups can be kept constant, therefore it is possible to

create a sufficiently deep network and training set to predict im-

ages that are nearly indistinguishable from the ones rendered until

convergence with full global illumination. Using deconvolutional

layers [Noh et al. 2015; Zeiler et al. 2010] would be a natural choice

for ϕ, however, as few of the most common software packages sup-

port it and unwanted artifacts may appear during image generation

[Odena et al. 2016], instead, the input signal is subjected to a series

of 1D convolutions, each followed by an upsampling layer to inflate

ACM Transactions on Graphics, Vol. 37, No. 4, Article 76. Publication date: August 2018.



Gaussian Material Synthesis • 76:7

Fig. 7. The best (left side) and worst-case (right side) predictions by our neural network on a set of 250 images. Mean PSNR: 37.96dB, minimum: 26.05dB,
maximum: 48.70dB.

the number of parameters as we advance deeper into the network

(Fig. 6).

This architecture is similar to the decoder part of Convolu-

tional Autoencoders [Masci et al. 2011] and can be described with

the shorthand notation of 4x{Conv1D(64, 3, 1) – Upsampling(2)}

– FC(1000) – FC(410
2 · 3), where the parameters of the convolu-

tional layer are number of filters, spatial kernel size and strides,
respectively. These layers use exponential linear units [Clevert

et al. 2015] with Glorot-initialization [Glorot and Bengio 2010]

and are trained via the Adam optimizer [Kingma and Ba 2014]

(lr=10−3, β1=0.9, β2=0.999, ϵ=10
−8, decay=0). Normally, a network

of this size introduces severe overfitting, even in the presence of

L1/L2 regularization [Nowlan and Hinton 1992; Zou and Hastie

2005] or dropout [Srivastava et al. 2014], especially if learning takes

place on a given, fixed dataset. However, as we can create our own

dataset, i.e., a potentially infinite number of shader-image pairs

via rendering, we are able to evade this problem by creating a suf-

ficiently large training set. In the interest of efficiency, we have

generated 45000 LDR shader-image pairs with a spatial resolution of

410
2
and 250 samples per pixel over 4 weeks on a consumer system

with a NVIDIA GeForce GTX TITAN X GPU, and since no means

were required to prevent overfitting, our training process converged

to 10
−2

(RMSE), a negligible but non-zeroL2 training and validation

loss (where a zero loss would mean containing all the noise from the

training set) in less than 30 hours. Our validation set contained 2500

images and the measured losses correlated well with real-world

performance. This pre-trained network can be reused as long as the

shader description remains unchanged and the inference of a new

image typically takes 3 to 4milliseconds. A further advantage of this

architecture is that similarly to Denoising Autoencoders [Vincent

et al. 2010], it also performs denoising on the training samples.

A key observation is that the more layers the neural network

contains, the more high-frequency details it will be able to represent

(a similar effect has been observed in Fig 4., Saito et al. [2016]). This

means that our proposed neural network contains enough layers to

capture the important features to maximize visual quality, but not

enough to learn the high-frequency noise contained in the dataset.

Normally, this denoising process re-

quires the presence of auxiliary fea-

ture buffers and longer computation

times [Sen and Darabi 2012] or other

deep learning approaches using more

complex architectures [Bako et al.

2017]. In our case, this step does

not require any additional complex-

ity and is inherent to the structure

of our network. Beyond producing

less noisy images in real time, this

is also a significant advantage in eas-

ing the computational load of creating

new datasets as the training images

do not have to be rendered until con-

vergence. We took advantage of this

by using only 250 samples per pixel for each training image, which

took six times less than the standard 1500 samples that would be

ACM Transactions on Graphics, Vol. 37, No. 4, Article 76. Publication date: August 2018.
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required for perfectly converged training samples, cutting down the

total time to produce the training set from 24 to 4 weeks.

4.3 Latent Space Variant Generation
After being presented with a gallery of material models, the user

may find that some recommendations are close to their preference,

but some require fine-tuning to fit their artistic vision for a scene.

Adjusting the materials by hand requires domain expertise and

a non-trivial amount of trial and error. In our solution, we seek a

dimensionality reduction technique that maps the shader inputs into

a 2D latent space where similar materials can be intuitively explored.

Non-linear manifold learning techniques come as a natural choice

for this kind of problem, however, the most well-known methods

[Belkin and Niyogi 2003; Maaten and Hinton 2008; Tenenbaum

et al. 2000] could not find coherent structures in 2D. Beyond that,

these techniques are unable to interpolate between the embedded

samples, therefore they would only be useful for visualization in

a latent space, but not for exploration. Dimensionality reduction

with autoencoders [Hinton and Salakhutdinov 2006] would require

orders of magnitude more samples to work properly (we have at

most a few tens at our disposal), which is infeasible as it would be

too laborious for the user to provide that many scores through the

presented gallery.

The Gaussian Process Latent Variable Model (GPLVM) [Lawrence

2004] is a non-linear dimensionality reduction technique which is

able to embed a few tens of high-scoring materials from the gallery

X =
[
· · · xi · · ·

]T
with xi ∈ Rm

into a set of low dimensional latent

descriptors L =
[
· · · li · · ·

]T
with li ∈ Rl

. Typically,m≫ l , in our

case,m = 19 and l = 2 to make sure that variant generation can

take place conveniently on a 2D plane. The likelihood of the high-

dimensional data using z high-scoring training samples is given

as

P
(
X|L,θ

)
=

z∏
i=1
N

(
Xi | 0, K

′

+ β−1I
)
, (8)

where K
′

is a covariance matrix similar to K containing elements

akin to (1) with a substitution of k (x, x′) → k (l, l
′

). In this case, the

optimization takes place jointly over the latent values in L and θ ,
i.e.,

L∗,θ∗ = argmax

L,θ
log

[
P
(
X|L,θ

)]
. (9)

Even though PCA disregards the non-linear behavior of BSDF pa-

rameters [Lafortune et al. 1997], it serves as a formidable initial

guess for L [Lawrence 2004] and θ is initialized with a wide prior.

Beyond the ability to learn efficiently from a handful a samples,

a further advantage of this method is that a new mapping can be

made between the latent and observed space x∗ = ψ (l∗), i.e.,
[
X
x∗

]
∼ N *

,
0,

[
K
′

k
′T
∗

k
′

∗ k
′

∗∗

]
+
-
, (10)

yielding the final closed-form solution

ψ (l∗) = k
′T
∗ K

′−1X,

σ (ψ (l∗)) = k
′

∗∗ − k
′

∗K
′−1k

′T
∗ . (11)

Fig. 8. Endowing the latent space with the expected preferences (upper
left) and similarities (lower right). The green dots represent the embedded
training samples, where the blue dot shows the reference input material to
be fine-tuned.

By storing and reusing K
′−1

, this mapping can be done in negligi-

ble time, which allows the user to rapidly generate new material

variants in this 2D latent space.

5 INTERACTIVE LATENT SPACE EXPLORATION
We have introduced a system using three learning algorithms in

isolation. GPR enables material learning and recommendation from

a few learning samples, the CNN opens up the possibility of neural

rendering, and the high-dimensional shader can be non-linearly

embedded in a 2D latent space using GPLVM. In this section, we

propose novel ways to combine these algorithms to obtain a system

for rapid mass-scale material synthesis and variant generation. A

more rigorous description of the final algorithm is presented in

Appendix A.

5.1 GPLVM Color Coding
When using GPLVM, each point in the 2D latent space corresponds

to anm-dimensional vector that describes a material model. Since

we have used GPR to learn the correspondence between these ma-

terials and user preferences, it is possible to combine these two

techniques to obtain the expected scores for these samples. This

combination enables a useful visualization of the latent space where

these expected preferences appear in the form of color coding. This

preference coding is useful to highlight regions of the latent space

that encode favorable materials, however, when fine-tuning a cho-

sen material, the requirement of obtaining similar materials is of

equal importance. Since our CNN is able to predict images in real

time, we propose subdividing the latent space into a 2D grid, where

an image can be predicted in each gridpoint. This image can be

compared to the image of the material we wish to fine-tune via a

distance metric of choice (e.g., L1/L2), therefore, the latent space

can thus be endowed with similarity information as well.
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Fig. 9. The color-coded 2D latent space can be explored in real time by
the user for variant generation. The vividness of the recommended grape
material can be fine-tuned rapidly without any domain knowledge.

The preference map is global, i.e., it remains the same regardless

of our input material where the similarity map depends on our

current material that is used as a starting point (Fig. 8). The product

of these two maps offers an effective way to create variants of a

source material that are similar, and are highly preferred according

to the learned preferences.

5.2 Real-Time Variant Generation
Exploring the 2D latent space of the learned materials is of limited

usefulness when the user has to wait for 40-60 seconds for each

new image to be rendered. A typical use case involves sweeping

motions that require near instantaneous feedback from the program.

As the 2D output of the GPLVM can be projected back to the high-

dimensional material space (with a dimensionality increase of l →
m), this output can be combined with our CNN, which provides

real-time image predictions to allow efficient exploration in the

latent space with immediate feedback. We demonstrate several such

workflows in our supplementary video.

6 RESULTS
In this section, we evaluate the three learning algorithms in isola-

tion and demonstrate the utility of our whole system by recording

modeling timings against the classical workflow for three practical

scenarios. Furthermore, we also discuss how the proposed system

handles our extended shader.

Learning material spaces. After having obtained u, we are inter-
ested in measuring the quality of the regression by relating it to

the true user preference function u∗. By normalizing both functions

and treating them as probability distributions, the Jensen-Shannon

divergence (JSD) yields a suitable metric to distinguish how much

Scene m n RProp L-BFGS-B SCG

Glassy 19 150 0.08 0.10 0.08
Glassy 19 250 0.09 0.09 0.08
Glassy 19 500 0.07 0.07 0.07

Translucent 19 150 0.17 0.18 0.18

Translucent 19 250 0.19 0.19 −

Translucent 19 500 0.17 0.17 0.17

Glassy 38 150 0.41 0.58 0.58

Glassy 38 250 0.35 0.57 0.57

Glassy 38 500 0.14 0.53 0.38

Metals/Minerals 38 150 0.53 0.55 0.55

Metals/Minerals 38 250 0.44 0.52 −

Metals/Minerals 38 500 0.32 0.62 0.60

Table 2. All three optimization techniques produce competitive JSD values in
the lower dimensional case (i.e.,m = 19). In the case of the extended shader
(m = 38), RProp consistently outperforms L-BFGS-B and SCG regardless of
the number of training samples (n).

information is lost if u is used as a proxy for the unknown u∗, i.e.,

JSD

(
u (x) | |u∗ (x)

)
=

1

2

∫ +∞
−∞

u (x) log
u (x)
m(x)

dx +
1

2

∫ +∞
−∞

u∗ (x) log
u∗ (x)
m(x)

dx,

(12)

wherem(x) = 1

2

(
u (x)+u∗ (x)

)
. We have recorded the JSD produced

by minimizing (7) with RProp, L-BFGS-B and the Scaled Conjugate

Gradient method and found that all three techniques are competi-

tive for the lower-dimensional case, i.e.,m = 19. In the case of the

extended shader, RProp consistently outperformed L-BFGS-B and

SCG, both of which often got stuck in poor local minima even when

being rerun from many randomized initial guesses (Table 2). For the

high-dimensional cases with over 200 training samples, SCG did not

always converge despite a non-singular K due to round-off errors.

We have used two challenging cases to demonstrate the utility of

our system by learning the material space of glassy and translucent

materials. These cases are considered challenging in a sense that

these materials are relatively unlikely to appear via random sam-

pling: in the glassy use case, 81% of the samples in the initial gallery

were scored zero. This ratio was 90% for the translucent case. We

have scored 1000 glassy and translucent materials on a scale of 0 to

10 to use as a ground truth dataset, where the first 250 samples were

used as training data for the GPR. In each case, our technique was

able to generate high-quality recommendations from 46 (glassy) and

23 (translucent) non-zero observations. The remaining 750 samples

were used for cross-validation to compute a reliable estimate of the

JSD. In both cases, the training took 7.22s and as a result, an arbitrar-

ily large gallery of recommendations can be generated in 0.06s per

recommendation on a mid-range consumer Intel Core i5-6600 CPU

(see Table 3 for a detailed breakdown). The metals and minerals

scene in Fig. 12 showcases a multi-round learning scenario where

the recommendation gallery was scored and re-used to generate a

second, more relevant gallery of materials (all other cases use one
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Fig. 10. Even for more challenging cases, the presence of Automatic Rel-
evance Determination stabilizes the GPR reconstruction quality around
150-250 training samples.

round of scores). The images and scores used in the training sets

are available in the supplementary materials.

Variant generation. A synthesized material of choice can be fine-

tuned via variant generation in our 2D latent space. The exploration

is guided by two different kinds of color-coding and real-time pre-

views of the final materials. We demonstrate the usefulness of this

element of our system in a real-world scenario by reducing the vivid-

ness of the grape material in the glassy still life scene (Fig. 9 and

supplementary video). The color-coded regions denote outputs that

are preferred and similar to the input material and form an island

that is easy to explore. The preference and similarity maps are com-

puted on a 50
2
and 20

2
grid respectively using an NVIDIA GeForce

GTX TITAN X GPU and are subjected to bilinear interpolation in

our visualizations.

Neural rendering comparisons. Because of our restricted problem

definition, our neural network can mimic a global illumination ren-

derer with high-quality predictions, and does not require retraining

when combined with a sufficiently expressive principled shader.

Three average case predictions are shown in Fig. 4 (middle). Three

of the best- and worst-case predictions and their difference images

as well as PSNR values are reported on a set of 250 images in Fig. 7.

Querying this neural network takes 3-4ms on average and in every

case, the predicted images were close to indistinguishable from the

ground truth. An additional advantage our proposed architecture

is that even though the training set contained moderately noisy

images (250 spp, visible in the floating image in Section 4.2 and

zooming in to the “Gallery with scores” part of Fig. 4), the predicted

images appear smoother.

Modeling and execution time. To show that our system is useful

for novice and expert users alike, we recorded the time required to

model 1, 10, and 100 similar materials using Disney’s “principled”

Stage Time [s] Size

GPR 7.22 250

Recommendation 0.06 / 17.4 1 / 300

GPLVM 1.96 16

CNN 0.04 410
2

Preference coding 2.75 50
2

Similarity coding 8.15 20
2

Sum 20.18 / 37.52

Table 3. Execution times for different stages of the proposed method. The
’Size’ column stands for the size of the problem at hand, i.e., training samples
for GPR and GPLVM, number of recommended materials, image resolution
for the CNN, and 2D spatial resolutions for preference and similarity coding.

shader [Burley and Studios 2012] against our technique. The two

main user types to be compared to is a novice user who has no

knowledge of light transport and material modeling, and an expert

with significant experience in material modeling. Both were allowed

several minutes to experiment with the principled shader before

starting. The novice and expert users took 161s and 52s to obtain

one prescribed base material model (a slightly scattering blue glass

material with a small, non-zero roughness). Creating subsequent

variants of this material took 29s and 19s where most of the time

was spent waiting for a reasonably converged rendered image to

show the minute differences between the base material and the new

variant. Using our technique, in the presented gallery, it took an

average of 2s to score a non-zero sample and 0.4s for a sample with

the score zero. Typically, in our workflows, 250 observations were

used to learn the material spaces and provide recommendations

therefore we based our timings on that number. When only one

material model is sought, novice users experience roughly equiva-

lent modeling times when using our proposed system. In the case

of mass-scale material synthesis, modeling times with our system

outperform expert users. Beyond cutting down the time spent with

material modeling, our system provides several other advantages

over the traditional workflow: it does not require any domain exper-

tise, provides real-time denoised previews throughout the process,

and during scoring, the users are exposed to a wider variety of ex-

amples. This last advantage is especially useful for novices who do

not necessarily have a prior artistic vision and are looking for inspi-

ration. We also note that the workflow timings are often even more

favorable as 150 samples are enough to provide satisfactory results

for learning challenging material spaces (Fig. 10). Our intention in

Fig. 11 was to show that our timings are appealing even in the more

pessimistic cases.

Adding displacements. In the results shown so far, we have used

a shader withm = 19 as a basis for the training process, however,

the GPR and GPLVM steps are capable of learning significantly

higher-dimensional inputs. To demonstrate this, we have created a

higher-dimensional SVBRDF shader that includes procedural tex-

tures and displacements. This shader (m = 38) is even more in line

with our design principles, i.e., more expressive at the cost of being

less intuitive, which is alleviated by using learning methods instead

of interacting with it directly. In this case, material recommendation
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Fig. 11. Time taken to generate 1, 10, and a 100 similar materials by hand
for users of different experience levels versus our technique (with the GPR
and recommendations steps).

and learning steps still perform well – we have used 500 samples to

learn metals and minerals and 150 samples for glittery Christmas

ornament materials (Fig. 12). The limitation of this extended shader

is the fact that it is ample in localized high-frequency details that

our CNN was unable to represent. We note that this is a hardware

limitation, and by adding more layers, more of these details are

expected to appear, our architecture will therefore be able to predict

these features as further hardware advancements take place, noting

that this may require a higher sampling rate for the training set.

After the recommendation and material assignment steps, displace-

ments can be easily added by hand to the simpler shader setup (as

shown in the supplementary video).

7 FUTURE WORK
Our technique starts out by showing a randomly generated gallery

to the user to obtain a set of scores. These BSDFs are sampled with

uniform distribution. We have experimented with improving it with

an active learning scheme [Kapoor et al. 2007] to introduce adap-

tivity to the sampling process, making the newer gallery elements

more relevant as they depend on the user-specified scores. For in-

stance, the sampler can be equipped with novelty search [Lehman

and Stanley 2008, 2011] to aggressively look for unexplored regions

that may be preferred by the user. Furthermore, after obtaining the

first few samples, quick GPR runs can take place, and instead of

standard uniform distribution, the upcoming gallery images can be

drawn from this learned intermediate distribution. We have found

this scheme highly effective, and in the supplementary material, we

provide a case with a “two-round” recommendation run for metals

and minerals. Novice users can be further aided through automatic

variant generation of new material(s) x′ to fine-tune an input x∗

by maximizing λs (x∗, x′) + (1 − λ)u (x′) for a multitude of different

λ ∈ (0, 1) choices instead of relying solely on maximizing u (x′) for
recommendations (see Table 1 for details on the notation). By using

GPR and GPLVM, not only the regressed outputs, but also their con-

fidence values can be visualized (Equations (5) and (11)), or used as

additional information for active learning. High-dimensional mea-

sured BRDF representations may also be inserted into the system.

Due to the increased parameter count, the GPR should be replaced

by a regressor that scales more favorably with the number of in-

put dimensions, e.g., a deep neural network. As this also requires

the presence of more training samples during the regression step,

nearby regions in the similarity map could be channeled back to

the neural network as additional data points. Since there is no the-

oretical resolution limit for the image predictions, our CNN can

be retrained for higher resolutions as GPU technology improves,

leaving room for exciting future improvements. To further enhance

the quality of the neural network outputs, we have implemented

the “late fusion” model in Karpathy et al.’s two-stream architecture

[2014] and experienced measurable, but marginal improvements. As

this area is subject to a significant volume of followup works, we ex-

pect that this direction, alongside with rapid improvements in GPU

technology will lead to the possibility of predicting outputs with

more high-frequency details in full HD resolution in the near future.

Variable light source types, positions, and camera angles can also

be learned by the neural network to enhance the quality of gallery

samples by showing animations instead of stationary images.

8 CONCLUSIONS
We have proposed a system for mass-scale material synthesis that

is able to rapidly recommend new material models after learning

the user preferences from a modest number of samples. Beyond this

pipeline, we also explored combinations of the three used learning

algorithms, thereby opening up the possibility of real-time mate-

rial visualization, exploration and fine-tuning in a 2D latent space.

Furthermore, the system works with arbitrary BSDF models and is

future-proof, i.e., preference learning and recommendation works

with procedural textures and displacements, where the resolution

and visualization quality is expected to further improve as the graph-

ics card compute power and on-board VRAM capacities grows over

time. Throughout the scoring and recommendation steps, the users

are shown noise-free images in real time and the output recom-

mendation distribution can be controlled by a simple change of a

parameter. We believe this feature set offers a useful solution for

rapid mass-scale material synthesis for novice and expert users alike

and hope to see more exploratory works harnessing and combining

the advantages of multiple learning algorithms in the future.
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A GMS PSEUDOCODE
To maximize reproducibility, we provide the pseudocode of our

system below. Note that the symbol “_” in lines 7, 14 and 16 refer

to throwing away part of the function return value (i.e., using only

the first dimension of the output of a 2D function).

Algorithm 1 Gaussian Material Synthesis

1: given τ , r ▷ Recommendation threshold, grid resolution

2: for i ← 1 to k do ▷ k GPR training samples

3: Generate random BSDF x
4: Ui ← u (x)
5: X←

{
x ∈ U | x > τ

}
▷ GPLVM training set

6: for i ← 1 to l do ▷ Recommendations

7: while Score(X, x, β−1) < τ , _ do
8: Generate random x
9: Rl ← x
10: Choose x∗ ∈ R for variant generation

11: Display ϕ (x∗)
12: for i, j ← 1 to r do ▷ GPLVM color coding, Section 5.1

13: init Gi j gridpoint with coordinates i, j and resolution r

14: x
′

, _← Latent (X,Gi j , 2, β
−1
)

15: s (x∗, x′) ← ||ϕ (x∗) − ϕ (x′) | |L2
▷ Similarity (CNN)

16: u (x′), _← Score(U, x′, β−1) ▷ Preference (GPR)

17: Ti j ← s (x∗, x′)u (x′) ▷ Store product coding

18: assign color Ti j to gridpoint Gi j

19: while Given user displacement δ do ▷ Explore latent space

20: Display ϕ (x∗ + δ )

Algorithm 2 Scoring a new BSDF

1: function Score(U, x∗, β−1) ▷ Score new BSDF, Section 4.1

2: init K,θ
3: θ∗ ← argmaxθ log

[
P (U|x,θ )

]

4: u (x∗) ← kT∗ K−1U
5: σ (u (x∗)) ← k∗∗ − k∗K−1kT∗
6: return u (x∗), σ (u (x∗))

Algorithm 3 Latent space mapping

1: function Latent(X, x∗, l , β−1) ▷ Latent mapping, Section 4.3

2: given x∗ = ψ (l∗)
3: init K

′

,θ

4: L∗,θ∗ ← argmaxL,θ log

[
P
(
X|L,θ

)]
5: ψ (l∗) ← k

′T
∗ K

′−1X
6: σ (ψ (l∗)) ← k

′

∗∗ − k
′

∗K
′−1k

′T
∗

7: returnψ (l∗), σ (ψ (l∗))
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Fig. 12. Synthesized glittery materials (above) followed by metals and minerals (below) using our extended shader.
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