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Kurzfassung

Die Simulation von Licht ist der Industriestandard, um überzeugende fotorealistische
Bilder zu erzeugen und wird häufig bei der Erstellung von Animationsfilmen, Computera-
nimationen, in Architektur-/ Medizinvisualisierung und vielen weiteren nennenswerten
Anwendungen eingesetzt. Da diese Techniken die Interaktionen zwischen Millionen von
Lichtstrahlen in virtuellen Szenen simulieren ist das Endergebniss sehr stark von der
Qualität der benutzten Materialien und Objektgeometrien in der Szene abhängig. In
dieser Dissertation behandeln wir zwei Kernprobleme bezüglich der photorealistischen
Materialsynthese.

Erstens, das Erstellen von überzeugenden photorealistischen Materialien. Das Erlernen
dieser Fähigkeit erfordert jahrelange Erfahrung eines geschulten Künstlers und selbst
dann ist ein nicht trivialer Zeitaufwand pro Material seitens des Künstlers gefüllt mit
Ausprobieren und Nachbessern. Wir schlagen zwei lernbasierte Methoden vor, welche
es unerfahrenen Nutzern ermöglichen, einfach und schnell photorealistische Materialien
zu synthetisieren indem die Präferenzen der Nutzer erlernt werden und anhand derer
beliebig viele neue Materialmodelle vorgeschlagen werden welche mit der artistischen
Vision des Nutzers in Einklang sind. Wir haben dieses System außerdem mit einem
neuronalen Renderer erweitert der die akkurate Lichtsimulation um Größenordnungen
schneller berechnen kann als herkömmliche Renderer die üblicherweise für diese Art von
Aufgabe verwendet werden. Infolge dessen sind unerfahrene sowie erfahrene Benutzer nun
in der Lage sehr schnell eine massive Anzahl an Materialien zu synthetisieren, welches
für beide eine signifikante Beschleunigung im Lern- und Arbeitsprozess darstellt.

Zweitens, die Simulation von Lichtstreuung unterhalb der Oberfläche eines Materials
(subsurface scattering). Solche eine Simulation ermöglicht die realitätsnahe Darstellung
bestimmter lichtdurchlässiger Materialien, jedoch haben die meisten publizierten Metho-
den einen sehr hohen Rechenaufwand und benötigen mehrere Stunden zur Berechnung
eines Bildes oder benutzen sehr vereinfachte Annahmen über die Streuung des Lichtes
innerhalb des Materials. Wir schlagen eine Reihe von Echtzeitmethoden vor die dieses
Problem lösen indem bekannte 2D Faltungsfilter in einzelne 1D Filter zerlegt werden
wobei ein hohen Grad an visueller Genauigkeit erhalten bleibt. Diese Methoden haben
Laufzeiten von wenigen Millisekunden und können in gängige Renderingsysteme als
einfacher Nachbearbeitungsschritt ohne tiefgreifende Änderungen integriert werden.
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Abstract

Light transport simulations are the industry-standard way of creating convincing photo-
realistic imagery and are widely used in creating animation movies, computer animations,
medical and architectural visualizations among many other notable applications. These
techniques simulate how millions of rays of light interact with a virtual scene, where
the realism of the final output depends greatly on the quality of the used materials and
the geometry of the objects within this scene. In this thesis, we endeavor to address
two key issues pertaining to photorealistic material synthesis: first, creating convincing
photorealistic materials requires years of expertise in this field and requires a non-trivial
amount of trial and error from the side of the artist. We propose two learning-based
methods that enables novice users to easily and quickly synthesize photorealistic materials
by learning their preferences and recommending arbitrarily many new material models
that are in line with their artistic vision. We also augmented these systems with a neural
renderer that performs accurate light-transport simulation for these materials orders of
magnitude quicker than the photorealistic rendering engines commonly used for these
tasks. As a result, novice users are now able to perform mass-scale material synthesis,
and even expert users experience a significant improvement in modeling times when many
material models are sought.

Second, simulating subsurface light transport leads to convincing translucent material
visualizations, however, most published techniques either take several hours to compute
an image, or make simplifying assumptions regarding the underlying physical laws of
volumetric scattering. We propose a set of real-time methods to remedy this issue by
decomposing well-known 2D convolution filters into a set of separable 1D convolutions
while retaining a high degree of visual accuracy. These methods execute within a few
milliseconds and can be inserted into state-of-the-art rendering systems as a simple
post-processing step without introducing intrusive changes into the rendering pipeline.
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CHAPTER 1
Introduction

1.1 Motivation

Light-transport simulation programs enable artists to synthesize accurate images of virtual
scenes by simulating how rays of light interact with the geometry and the materials
of these scenes. This process is often referred to as “rendering” an image. With the
ascendancy of these techniques, artists became able to create convincing architectural
visualizations and computer animations to the point where entire feature-length movies
can be rendered solely with virtual actors and objects. However, many of the earlier
methods represent objects as surfaces – as a result, translucent materials that scatter
light within the volume of the objects (e.g., human skin, most plastics, milk, marble
and more) remain out of reach. Later, volumetric light-transport techniques opened up
the possibility of rendering a variety of these translucent materials, however, they also
require significant tradeo�s either in terms of visual quality or have execution times in
the order of several hours of days. In this thesis, we identify two key issues that appear
in most modern rendering systems and propose a set of solutions to address them:

• Most modern rendering systems o�er a node-based shader tool where the artist
may adjust a set of physical parameters and obtain a rich selection of photorealistic
materials. These are often referred to as “principled” shaders. Their main goal is
typically to be able to encapsulate every possible commonly used material model
the user might need in a common workflow. However, this expressivity comes with
the burden of complexity: the artist has to be able to understand not only the key
physical parameters in isolation (e.g., absorption coe�cients, indices of refraction),
but also how they interact with each other. This requires significant expertise in
the field of material modeling.

One of our key observations is that this first issue can be remedied with a learning-
based system that enables novice users to perform mass-scale material synthesis without
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1. Introduction

requiring extensive knowledge of physically based light transport. We further speed up
this process with a neural renderer that replaces the light transport simulation with a
learning technique that can produce faithful images of the recommended materials several
orders of magnitude faster. We also propose an intuitive variant-generation method
to fine-tune the details of a select set of obtained materials. Finally, we introduce a
method that is aimed at novice users that only requires knowledge of the most basic
image processing operations. In this proposed workflow, the user starts by applying a
few intuitive transforms (e.g., image colorization, image inpainting and more) to a chosen
input material, and in the next step, our learning-based technique produces a material
model that is faithful to this target image. This process o�ers a high-quality output
material within 20-30 seconds of computation time.

The second issue we’re concerned with is the complexity of simulating subsurface light
transport:

• Rendering a wide range of translucent materials in real time has been a long-
standing challenge in computer graphics. Most existing methods either render
only a coarse approximation of subsurface light transport in real time, or take
several hours to synthesize an accurate image. The fact that these images have
to be re-rendered every time a physical parameter is changed also introduces a
non-trivial amount of trial and error in this process and results in an ine�cient
material modeling workflow.

Convolution-based subsurface scattering methods can be implemented as a post-process
filter, providing a promising research direction for this issue. However, most of these
methods still remain out of reach for real-time applications where it is a requirement
to execute within a few milliseconds. In this thesis, we propose a technique that builds
on the observation that many of these 2D convolutions can be decomposed into a set
of separable 1D convolutions and be executed significantly faster while retaining a high
degree of visual accuracy. This method works in screen space and therefore performs well
in real-time environments that are ample in fine geometry and high-resolution textured
data.

1.2 Contributions and Publications

The following section breaks down how we apportioned our contributions into three
published papers that comprise this thesis and the roles I took in these projects.

• In our Gaussian Material Synthesis paper (Chapter 3), we endeavor to address
the first issue by proposing a rapid mass-scale material synthesis system for novice
and expert users alike. This method learns the preferences of the user by presenting
them with a gallery of materials, collecting their scores and recommending arbitrarily
many new materials from the learned distributions. However, as each of these

2



1.2. Contributions and Publications

recommended materials would take 40-60 seconds to visualize via photorealistic
rendering, we also propose a neural renderer that is able to perform these light-
transport simulations within a few milliseconds. Neural rendering, in general,
remains an unsolved problem. However, one of our key observations is that these
material-modeling workflows can take place with a fixed piece of geometry, lighting
and camera setup, leading to a restricted problem definition that can be solved
e�ciently. Finally, in this work, we also propose a latent-space method that enables
the rapid exploration of alternatives to a reference material to further reduce the
time taken in the laborious fine-tuning stage of the material-modeling process.
In this project, I came up with the mathematical theory, implementation and wrote
the entirety of the paper and the supplementary materials. Michael Wimmer and
Peter Wonka provided supervision for this work.

Károly Zsolnai-Fehér, Peter Wonka, and Michael Wimmer. Gaussian
Material Synthesis. ACM Transactions on Graphics (Proc. SIGGRAPH)
(2018) 37 (4).

• Our other work in this direction, Photorealistic Material Editing Through
Direct Image Manipulation (Chapter 4), o�ers an improved variant of this
technique where artists can reuse their general image-processing expertise to create
photorealistic materials more e�ciently: first, the user is asked to apply a few
intuitive transforms to a reference material (e.g., colorization, image inpainting).
In the next step, our technique takes this non-physical image and proposes a
photorealistic material that closely approximates it. This method works in the
presence of poorly edited images and executes within 20-30 seconds. As a result,
the user can skip the exploration step and arrive at their envisioned material model
immediately, within one step.
In this project, I came up with the mathematical theory, implementation and wrote
the entirety of the paper and the supplementary materials. Michael Wimmer and
Peter Wonka provided supervision for this work.

Károly Zsolnai-Fehér, Peter Wonka and Michael Wimmer. Photorealistic
Material Editing Through Direct Image Manipulation (Technical Report,
under review).

• With Separable Subsurface Scattering (Chapter 5), we endeavor to address
the problem of e�cient subsurface light transport by proposing a set of real-time
techniques, all of which rely on separable approximations. In this work, we show
that this e�ect can be simulated as a collection of rapid 1D separable convolutions
in real time while delivering results of higher quality than what previously known
techniques o�er. To maximize impact, we designed these techniques in a way
that they can be implemented as simple post-processing steps without introducing
intrusive changes to the rendering pipeline.
I have worked on the mathematical theory, wrote the majority of the paper, and
supervised the implementation of this project. The initial idea is the work of

3



1. Introduction

Jorge Jimenez, who produced the first implementation and a tech report with
Adrian Jarabo, which was extended later from our side by Christian Freude. The
pre-integrated model was derived by Thomas Auzinger, and the project was jointly
supervised by Diego Gutierrez and Michael Wimmer.

Jorge Jimenez, Károly Zsolnai, Adrian Jarabo, Christian Freude, Thomas
Auzinger, Xian-Chun Wu, Javier von der Pahlen, Michael Wimmer, and
Diego Gutierrez. Separable subsurface scattering. Computer Graphics
Forum (2015) 34 (6).

All three of the showcased papers are equivalent to their published version, with a
few changes to provide a better flow for the thesis, i.e., the appendices, parts of the
supplementary material and Q&A-s have been placed into their corresponding papers.
To foster future works in this area, we provide the full source code and pre-trained neural
networks for the entirety of all of these projects.

1.3 Technical Background and Challenges

In this thesis, our main goal is to provide a set of tools to empower artists to be able to
create their envisioned photorealistic materials without requiring years of expertise in
material modeling. This chiefly refers to learning user preferences and simplifying the
material-modeling pipeline, noting that a prerequisite of this process is also that artists
can rapidly produce new images of their chosen materials (this process is commonly
referred to as rendering). In this section, we provide a gentle introduction to the basics
of light transport and pinpoint how our contributions fit in this research field.

1.3.1 The BRDF

In order to synthesize a photorealistic image, a simulation framework must contain a
mathematical description of the scattering properties of materials that appear in nature,
which typically takes places through the Bidirectional Reflectance Distribution Function
(BRDF), i.e.,

fr
!
Ę̂, x, Ę̂Õ" , (1.1)

which is a probability density function that outputs the probability of an outward direction
Ę̂Õ when given an incoming light direction Ę̂ at a spatial position x. This provides a
simple and elegant way of describing the more rudimentary materials seen in nature, e.g.,
a di�use (matte) material can be represented with a uniform distribution, and a perfect
specular mirror can be thought of as the Kronecker delta function which is 1 at the perfect
reflection direction and 0 everywhere else. This BRDF term is to be evaluated every time
a ray of light intersects a material within a scene and admits three key properties that
makes working with it easier. Below, we formally describe these properties and provide
an intuitive explanation for each of them:
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1.3. Technical Background and Challenges

• The BRDF obeys the Helmholtz-reciprocity rule, i.e.,

’Ę̂, Ę̂Õ : fr
!
Ę̂, x, Ę̂Õ" = fr

!
Ę̂Õ, x, Ę̂

"
. (1.2)

Intuitively, this means that in our formulations, the direction of a ray of light may
be reversed and all of our previous mathematical calculations will remain correct.
Normally, we build light paths from from light source towards the camera – this
is a solution that is computationally wasteful due to the fact that most rays of
light in the scene never end up hitting the camera. Instead, we can start them
from the camera, guaranteeing that at least one of the endpoints of every ray of
light contributes to our final image. Helmholtz-reciprocity is useful in these cases,
and tracing rays this way is thus the baseline for the most commonly used global
illumination methods.

• Positivity,
’Ę̂, Ę̂Õ : fr

!
Ę̂, x, Ę̂Õ" Ø 0. (1.3)

This property ensures that it is impossible for an incoming-outgoing direction pair
to have a negative probability.

• Energy conservation. A material may reflect and absorb a portion of the
incoming light, but the sum of the outgoing energy may not be greater than the
total amount of incoming energy. Formally,

⁄

�
fr

!
Ę̂, x, Ę̂Õ" cos ◊ dĘ̂Õ Æ 1, (1.4)

where the presence of the cosine term accounts for the attenuation of light rays
arising from the angle (◊) between the incoming direction and the surface normal.
The integration takes places on �, i.e., the illumination hemisphere. In the case of
a perfectly reflective material, the left side equals 1, and for perfectly absorbing
blackbodies, it will equal 0. In a simulation that violates this property, the radiance
transferred by a ray of light can increase upon every bounce, even in perpetuity
(depending on the maximum number of simulated bounces), often resulting in a
perfectly white output image.

So far, we have discussed rays of light bouncing o� of (or absorbed by) di�erent materials
and how the BRDF describes this behavior. We note that di�erent variants of this
probability density function also exist, e.g., the Bidirectional Transmittance Distribution
Function (BTDF) to account for transmissive materials, and that the term BSDF (S is
for Scattering) is used as a common way of referring to a family of these functions, i.e.,
BSDF = BRDF fi BTDF .

1.3.2 Di�culties and Solutions

From the viewpoint of a physicist, BSDF models provide an excellent way of modeling
physically based real-world materials. In fact, the concept itself is so powerful that

5



1. Introduction

Figure 1.1: A standard simulation of the rendering equation assumes no participating
medium and bounces rays of light o� of the surface of solid objects.

a “principled” BSDF model [BS12] can be built that is typically implemented as an
interpolation of arbitrarily many already existing BSDF models (e.g., di�use, specular,
translucent) and hence, can span many common materials appearing in our daily lives.
However, such a principled model depends on a vast number of physical parameters, and
as many of these photorealistic rendering programs end up in the hands of artists who
do not have the necessary background knowledge of the intricacies of light-transport may
struggle in productively using these principled material models. To alleviate this, in
Gaussian Material Synthesis, we set out to create a tool that presents the artist with
a collection of example materials and asks for a set of scores to be able to learn which
ones are close to their envisioned results, and recommend new materials that the artist is
expected to find desirable. Alternatively, in our work, titled Photorealistic Material
Editing Through Direct Image Manipulation, we o�er a di�erent learning-based
solution that skips this step and immediately shows the closest achievable BSDF for an
edited input image.

1.3.3 The Rendering Equation

The BRDF term, as we described in the previous section, cannot yield output images
unless it is embedded within a rendering system. To be able to create an image with a
high degree of realism, many millions of light rays have to be simulated and bounced
around in the scene (Fig. 1.1). In the case of path tracing (the unidirectional kind),
these rays originate at the camera and traverse the scene in a straight line until they
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1.3. Technical Background and Challenges

intersect a solid object. In this case, the main quantity of interest is Lo(x, Ę̂), i.e., the
exiting radiance (measured in W · sr≠1 · m≠2) from a spatial position x towards Ę̂, i.e.,
an incoming direction (typically pointing towards the camera). The rendering equation
records that this quantity is obtained as the sum of the emitted light towards the camera
Le(x, Ę̂) and the reflected incoming light Li (x, Ę̂Õ) weighted by the BRDF and a cosine
term for light attenuation [Kaj86], i.e.,

Lo(x, Ę̂) = Le(x, Ę̂) +
⁄

�
Li

!
x, Ę̂Õ" fr

!
Ę̂, x, Ę̂Õ" cos ◊ dĘ̂Õ, (1.5)

where ◊ denotes the angle between the incoming light direction and the surface normal,s
� . . . dĘ̂Õ denotes an integral operator for the illumination hemisphere over all possible

Ę̂Õ incoming light directions. Solving this Fredholm integral equation of the second kind
is fraught with di�culties: a closed-form solution can only be obtained in a small set
specialized cases, partly due to the mathematical complexity of the integrand (e.g., scene
geometry, visibility, discontinuities), and beyond that, the inner Li (x, Ę̂Õ) also expands
into a separate rendering equation. As the potential number of light-ray bounces is
unbounded, this process yields in an infinite-dimensional integral. The infinite-dimensional
nature of the integral can be addressed by using Russian Roulette, a technique that
terminates light paths without introducing systemic bias [PH04], or alternatively, a
simpler, but biased solution can be obtained by imposing a limit on the number of light
ray bounces in the simulation. Furthermore, if the BRDF term describes a perfectly
specular material (i.e., a Kronecker delta), the integrand becomes singular. This can be
partly addressed with an “if this then that” solution in which the output ray direction is
selected deterministically as the perfect reflection direction. More sophisticated solutions
can also be obtained through regularization [KD13], i.e., creating a mollification function
that “smears” the infinitely thin spike of a perfect specular reflection into a more well-
behaved di�use BRDF that is easier to handle early on in the rendering process. In
this case, the amount of this “smearing” is referred to as mollification width, which
asymptotically tends to zero as the simulation progresses, thereby providing an unbiased
simulation as the number of drawn samples tends to infinity.

1.3.4 Di�culties and Solutions

As noted, the rendering equation, in general, cannot be solved analytically, hence, the
most common solutions are obtained through Monte Carlo integration. This technique
takes the average of samples drawn randomly from the integral, and over time, a “good
enough” solution emerges, provided that a su�cient amount of samples are used. Initially,
as the first few samples are taken, depending on the random choices, the estimation of the
integral is under or overestimated, and these inaccuracies materialize in the output image
as noise. As more samples are added, the error of a consistent Monte Carlo estimator
asymptotically converges to zero, i.e., sooner or later, a perfectly noise-free output image is
produced. However, as the expected error of the Monte Carlo estimation using N samples
is proportional to 1/

Ô
N , 4 times as many samples are required to cut the error down to

50%, 16 times as many are required to cut down the error to 25%, and 100 times as many
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1. Introduction

Figure 1.2: The radiative transport equation introduces participating media in the
simulation process, and thus, intersection points can appear anywhere in space and need
not to be attached to object boundaries.

samples are needed to obtain a result that is 10 times better. With the ascendancy of
neural network-based learning methods, a few early works had shown that a few aspects of
light transport, e.g., indirect illumination, can be learned and resolved via neural networks
with remarkable accuracy [RWG+13]. Later, neural network-based solutions were used
to take over a greater set of light-transport phenomena [NAM+17b], however, general
neural rendering is still not a possibility. In our Gaussian Material Synthesis and
Photorealistic Material Editing Through Direct Image Manipulation works,
we recognized that in most material-editing workflows, the scene geometry, lighting and
camera positions can be kept constant, in which case, the light-transport simulation can
be substituted by a neural renderer that is able to produce images that are close to the
simulated ground-truth solutions. However, instead of taking from minutes to hours to
compute, the neural network infers a new image orders of magnitude quicker, i.e., within
2-6 milliseconds. This way, we were able to create a material-modeling workflow where
the artist can immediately observe the results of our material-synthesis methods, which,
according to our studies, substantially enhances their productivity.

1.3.5 The Radiative Transport Equation and BSSRDF

Unless special measures are taken (e.g., BSSRDFs are used instead of BSDFs, to be
discussed later in this section), the rendering equation assumes no participating medium,
and hence, all intersection points are located on the surfaces of solid objects. This
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1.3. Technical Background and Challenges

simplification bars it from simulating a number of volumetric phenomena, such as haze,
fog, smoke, and a rich selection of translucent materials, such as human skin, milk, marble
slabs, and more. The radiative transport equation takes these e�ects into account (Fig.
1.2), i.e.,

(Ę̂ · Ǫ̀)L(x, Ę̂) = ≠ ‡tL(x, Ę̂) + Q(x, Ę̂) + ‡s

⁄

4fi
L(x, Ę̂)p

!
Ę̂, Ę̂Õ" dĘ̂Õ . (1.6)

Note that this formulation yields not the radiance L(x, Ę̂) itself, but its change along the
direction Ę̂, which decreases when traveling through an absorbing (‡a) and scattering (‡s)
medium (where the extinction coe�cient is given as ‡t = ‡a+‡s), and potentially increases
through a source term Q(x, Ę̂), and via in-scattering from all possible directions, i.e.,s

4fi . . . dĘ̂Õ. The phase function p (Ę̂, Ę̂Õ) can intuitively be thought of as the participating-
media equivalent of the BRDF and describes the scattering behavior of the medium.
Here, we assume it to be a normalized, i.e.,

⁄

4fi
p

!
Ę̂, Ę̂Õ" dÊÕ = 1, (1.7)

and only dependent on the phase angle,

p
!
Ę̂, Ę̂Õ" = p

!
Ę̂ · Ę̂Õ" , (1.8)

and thus independent of spatial position x. In the case of an infinitesimally thin beam
traveling a distance s in direction Ę̂i within a homogeneous medium, the radiative transfer
equation simplifies to an exponentially decaying function,

Ls (xi + sĘ̂i, Ę̂i) = e≠‡tsLi (xi, Ę̂i) . (1.9)

This is an intuitive property of volumetric light transport as a flashlight can easily be
seen through a sheet of paper, remains faintly visible when hidden behind a human ear
or finger, but gets completely concealed behind a thick slab of marble. This formulation
accounts for a wide swath of participating media and translucent materials, however,
further increases the dimensionality of the integral (per bounce) and hence, the number
of Monte Carlo samples required to solve for L often becomes intractable, especially if
we take into account multiple scattering.

In many practical applications, the scene itself doesn’t require an external participating
medium such as haze or smoke, but contains translucent materials. In these cases, one
can obtain most of the advantages of the radiative transport equation by reverting to the
rendering equation and switching the BRDF terms to the bidirectional surface scattering
distribution function (BSSRDF) [JMLH01],

Lo (xo, Ę̂o) =
⁄

A

⁄

2fi
S (xi, Ę̂i; xo, Ę̂o) Li (xi, Ę̂i) cos ◊ dÊidA (xi) . (1.10)

Note that in this case, it is possible to eschew using the radiative transfer equation and
solve a local surface integral instead. The BSSRDF is a 4-dimensional function where

9



1. Introduction

Figure 1.3: A simulation that includes computing subsurface light scattering and absorp-
tion events through the BSSRDF (right) opens up the possibility of visualizing a rich
selection of translucent materials.

a ray of light is assumed to enter the volume at point xi and direction Ę̂i, undergoes a
potentially vast number of scattering events (or gets absorbed), and exits at point xo

and direction Ę̂o (Fig. 1.3). However, this all comes at a price: to obtain the outgoing
radiance Lo (xo, Ę̂o), this expression is subject to integration over incoming directionss

2fi . . . dÊi and the surface area subject to subsurface light transport, i.e.,
s

A . . . dA (xi).

1.3.6 Di�culties and Solutions

The BSSRDF formulation enables us to keep using the rendering equation and still
simulate translucent materials, but due to its increased integration requirements, it is still
computationally expensive, i.e., often takes from minutes to hours to converge for practical
cases. To alleviate this, a few reasonable simplifications can be made to accommodate
many creative applications that require the visualization of these translucent materials.
First, if one lights a normally incident, infinitesimally thin pencil beam towards an infinite
half-space made of a homogeneous translucent material, a symmetric di�usion profile
(Rd) emerges (Fig. 1.4). This profile is useful when formulating the di�usion term (Sd)
of the BSSRDF [JMLH01], i.e.,

Sd (xi, Ę̂i; xo, Ę̂o) = 1
fi

Ft (÷, Ę̂i) Rd (Îxi ≠ xoÎ) Ft (÷, Ę̂o) , (1.11)

where the Fresnel transmittance term (Ft) describes the probability of transmittance upon
incidence between two di�erent optical media (given by their relative indices of refraction
÷) and the di�usion profile only depends on the distance r, i.e., Rd(r) = Rd (Îxi ≠ xoÎ).
Intuitively, the first term accounts for the pencil beam entering the volume, the second
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Figure 1.4: The di�usion profile emerging over a homogeneous material from a normally
incident, infinitesimally thin pencil beam. The design of this image was inspired by Habel
et al.’s work [HCJ13].

Figure 1.5: Our work adds subsurface light transport to the irradiance signal as a simple
post-processing step. Source: Christian Freude’s corresponding thesis on our project
[Fre15].

term expresses the amount of scattering between the entrance and exit points, and the
third term accounts for the beam exiting the volume.

These di�usion profiles can be recorded for a variety of scattering materials through a
Monte Carlo simulation [WJZ95] once and be reused in perpetuity. We showcase the
result of such a simulation for a skim milk material in Fig. 1.6. The execution time of the
rendering process can be further improved by approximating Rd via a sum of Gaussians
and taking advantage of the fact that the 2D radial convolution of two Gaussians will
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Figure 1.6: Our simulation of the di�usion profile of skim milk on the three representative
wavelengths. Note that as Rd(r) is symmetric for isotropic, homogeneous materials, it
only depends on the distance r and it is su�cient to visualize one half of the distribution.

always yield another Gaussian [dLE07]. Such a 2D convolution kernel can be applied
to the underlying irradiance signal and will process orders of magnitude faster than a
comprehensive volumetric simulation. With Separable Subsurface Scattering, we
endeavored to contribute to this line of research by proposing a set of fast, separable
1D convolutions to bring the computational requirement of this process further down to
0.489ms per frame for a full HD image while retaining the visual quality of the solution.
This technique also works in screen space, can be applied as a simple post-processing
step (Fig. 1.5), does not require intrusive architectural changes to the renderer and is
actively used in the industry for several AAA titles created by Activision-Blizzard.
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CHAPTER 2
Related Work

In our first two works, we are primarily concerned with improving the process of material
modeling for artists working with photorealistic rendering tools, while our third technique
improves the rendering of real-time subsurface scattering. In the following, we provide a
brief overview of the most pertinent related research works.

2.1 Material Acquisition

Many of these workflows start with an acquisition step where a real-world material is
to be measured with strobes and turntables [MIWI16], screens and cameras [AWL13] or
other equipment to obtain a digital version of it that mimics its reflectance properties.
To import this measured data into a production renderer, it can be either used as-is,
can be compressed down into a lower-dimensional representation [PRJ+13, RJGW19] or
approximated through an analytic BSDF model [PdMJ14]. Many learning-based works
aim to improve the cost e�ciency and convenience of this acquisition step by only requiring
photographs of the target material [AWL+15, AAL16, DAD+18, DAD+19, GLD+19].
Alternatively, precomputed BSDF databases o�er the possibility of working with these
materials without the acquisition of a physical copy [Mat03, DJ18], where the key
challenge is easing the navigation and browsing of the high-dimensional measured data.
Database-driven methods contain this acquired reflectance data for a vast number of
possible materials to populate a scene, however, they are typically very sizable and either
cannot produce new materials on the fly [BUSB13], or are lacking in more sophisticated
material representations (e.g., BSSRDFs) [Mat03]. These high-dimensional datasets can
be transformed onto a lower-dimensional manifold, where the navigability of the measured
data can be improved through interpolation [SSN18]. We discuss further techniques
for dimensionality reduction in Section 2.5 and demonstrate practical use-cases in our
Gaussian Material Synthesis work.
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Figure 2.1: Chen et al.’s work [CXY+15] (also the source of this image) recommends a
set of material models for indoor scenes that satisfy a user-specified color scheme.

In our first two works, we aimed to develop two novel systems where no physical access
to the sought materials or additional equipment is required, and where fine artistic
control over the outputs is a possibility. In addition to the BRDF recovery methods
mentioned earlier, our proposed material synthesis techniques are also related to inverse
rendering approaches [MG98, RH01], where important physical properties are inferred
from a real photograph, typically with unknown lighting conditions. In our works, the
material test scene contains a known lighting and geometry setup, enabling not only the
rapid discovery of new materials, but artistic control through standard and well-known
image-space editing operations.

2.2 Material Editing

When a physical copy of a sought material is not available, the artist may, instead, use
an already existing material database or an appropriately expressive principled shader,
both of which are available within many photorealistic rendering systems. To be able to
e�ciently use these systems, an artist is typically required to have an understanding of
physical quantities pertaining to the most common modeled phenomena in light transport,
e.g., indices of refraction, scattering and absorption albedos and more [STPP09, BS12].
This modeling time can be cut down by techniques that enable editing BRDF models
directly within the scene [BAOR06, CPWAP08, SZC+07]. However, with many of
these methods, the artist is still required to understand the physical properties of light
transport, often incurring a significant amount of trial and error. To alleviate this, our
first framework does not expose any physical BSDF parameters to the user, but learns
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2.2. Material Editing

Name In-scene editing Exploration Moderate-scale Mass-scale

Direct interaction 7 7 7 7
BRDF relighting 3 7 7 7
Gaussian Material Synthesis (Chapter 3) 7 3 3 3

Photorealistic Material Editing (Chapter 4) 7 3 3 3

Table 2.1: The key advantage of BRDF relighting methods is the possibility of editing
the materials directly within the final scene at the cost of forfeiting rapid exploration
and mass-scale material synthesis. To help the artist explore many potential candidate
materials, GMS supports variant generation through a 2D latent-space projection while
our Photorealistic Material Editing (PME) method o�ers close to real-time performance
on image sequences. The yellow and green check marks showcase that PME outperforms
in moderate-scale problems while GMS excels at mass-scale material synthesis.

the user preferences directly and is able to rapidly recommend desirable material models
on a mass scale. Reducing the expertise required for material editing workflows has been
a subject to a significant volume of research works: an intuitive editor was proposed
by pre-computing many solutions to enable rapid exploration [HR13], and carefully
crafted material spaces were derived to aid the artist [SGM+16, SSN18, LMS+19]. As
an alternative solution, selectively editing physical properties such as albedos, specular
reflections without changing other parameters is also a possibility [SJR18, TKL+16].
The separation of these parameters during editing is highly beneficial, especially for
di�use-specular components [SJR18]. Instead of editing these materials directly, other
techniques enable editing secondary e�ects, such as caustics and indirect illumination
within the output image [SNM+13].

With our Photorealitic Material Editing work, we endeavored to create a solution that
produces the desired results rapidly by looking at a non-physical mockup image, requiring
expertise only in 2D image editing, which is considered to be common knowledge by nearly
all artists in the field. Chen et al.’s work [CXY+15] (Fig. 2.1) operates by populating a
scene with materials based on an input color scheme. We expect that this, along with
other color mixing methods (e.g., Shugrina et al.’s work [SLD17]) can be combined with
our proposed techniques to enhance the process of assigning a collection of materials
to a scene. By using our Photorealistic Material Editing system, artists can reuse their
image editing knowledge and apply it to material synthesis, even if they don’t have any
direct experience in this field. If one, or at most a handful of materials are sought, the
modeling times of our proposed method are preferable to Gaussian Material Synthesis
(GMS). In Table 2.1, we endeavored to simplify the process of choosing the appropriate
class of methods for a prescribed application.
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2.3 Neural Networks and Rendering

The recent resurgence of neural network-based learning techniques stimulated a large body
of research works in photorealistic rendering. A class of techniques uses neural networks to
approximate a selected aspect of light transport such as indirect illumination [RWG+13]
or participating media [KMM+17]. To extend these endeavors, other works can be used to
perform other related tasks, such as approximating sky models [SBRCD17] or Monte Carlo
noise filtering [GLA+19, LMH+18, KBS15]. There is also a growing interest in replacing
a greater feature set of the renderer with learning algorithms [NAM+17a], which typically
requires the presence of additional information, e.g., a number of auxiliary bu�ers. In
our problem formulations, we are interested in a restricted version of this problem where
geometry, lighting, and the camera setup are fixed and the BSDF parameters are subject
to change. We show that in this case, it is possible to replace the entirety of the renderer
without a noticeable loss of visual quality.

2.4 Neural Networks and Optimization

Optimization is present at the very core of every modern neural network: to be able to
minimize the prescribed loss function e�ciently, the weights of the networks are fine-tuned
through gradient descent variants [Bot10, RM51] or advanced methods that include the
use of lower-order moments [KB14], while additional measures are often taken to speed
up convergence and avoid poor local minima [SMDH13, Goh17]. Similar optimization
techniques are also used to generate the model description and architecture of these neural
networks [ZL16, EMH18], or the problem statement itself can also be turned around by
using learning-based methods to discover novel optimization methods [BZVL17]. Later,
in our photorealistic material editing work, we propose two combinations of a neural
network and an optimizer – first, the two can be combined indirectly by endowing the
optimizer with a reasonable initial guess, and directly by using the optimizer that invokes
a neural renderer at every function evaluation step to speed up the convergence by
several orders of magnitude. This results in an e�cient two-stage system that is able to
rapidly match a non-physical target image and does not require the user to stay within a
prescribed manifold of artistic editing operations [ZKSE16]. Zhu et al.’s method uses a
generative model to synthesize images, whereas our PME technique seeks a parameter
setup to be used with a principled shader. In their work, the space of image-editing
operations is constrained, but in return, yields a large variability for their output images.
Our technique strikes a di�erent tradeo� where the space of editing operations is more
forgiving, and produces outputs that must adhere to the rules of the principled shader,
i.e., represent photorealistic materials. This design choice also necessitates our “best of 9”
scheme to provide robust results. Furthermore, our optimization process involves invoking
a neural renderer to produce the intermediate images to compare against the target
image, and each of our stages are modular, i.e., can be used in isolation or combined
together depending on the requirements of the artist.
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2.5 GPR, GPLVM

Gaussian Process Regression (GPR) is an e�ective learning method where prior knowledge
of a problem can be harnessed via a covariance function, enabling high-quality regression
using a modest amount of training samples. It o�ers useful solutions in the perimeter of
computer graphics and machine learning – examples include performing super resolution
[HS11], analyzing and generating dynamical models for human motion [WFH08], or
synthesizing doodles and ocean waves [AL11]. Generative latent-space techniques proved
to be highly useful in a variety of areas: they are able to design new fonts by using the
Gaussian Process Latent Variable Model (GPLVM) to find low-dimensional structures in
high-dimensional data and expose them to the user [CK14], generate imaginary human
faces and perform meaningful algebraic operations between them [BJLPS17], synthesize
new shapes when given a database of examples [AKZM14], or suggest a selection of
perceptually di�erent parameter choices [MAB+97, KSI14]. It is clear that these methods
are powerful tools in isolation – in this thesis, we show a novel combination of GPR,
GPLVM and a Convolutional Neural Network that opens up the possibility of learning
the material preferences of a user and o�ering a 2D latent space where the real-time
fine-tuning of the recommended materials is possible.

2.6 O�-line Subsurface Scattering

The simulation of scattering inside translucent materials dates back to the radiative
transfer equation [Cha60], which can be solved by traditional path-sampling techniques.
The solution of this integral is a very demanding process in terms of computation time,
especially if solved for a high number of bounces. Optimization techniques to reduce the
computation times include using a dipole model [JMLH01, JB02] and modeling multiple
scattering as a di�usion process [Sta95]. Donner and Jensen [DJ05] extended the dipole
into a multipole model that allows modeling multi-layered translucent materials, such as
skin. The same authors later introduced a photon di�usion technique to combine photon
tracing and the di�usion approximation [DJ07]. These works yield impressive results
with computation times in the order of seconds per image. The inherent inaccuracies of
the di�usion theory can be overcome by using a more refined di�usion model to separate
single and multiple scattering terms, alongside with the quantization of the Green’s
function of the di�usion equation to obtain realistic all-frequency results [DI11] (Fig.
2.2). Further improvements revolve around better importance sampling [KF12], while a
di�erent class of techniques relies on solving the searchlight problem by means of Monte
Carlo integration imbued by multiple importance sampling [HCJ13].

2.7 Real-time Subsurface Scattering

Borshukov and Lewis [BL03] approximate subsurface scattering by blurring a 2D di�use
irradiance texture using a Gaussian filter. While this technique is e�cient and maps
well to the GPU, it neglects the more subtle details of subsurface scattering. This idea
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Figure 2.2: d’Eon et al.’s seminal work on subsurface scattering [DI11] (also the source
of this image) adds the di�usion e�ect to the albedo and irradiance signals (1st and
2nd layers) by convolving a set of of Gaussians (3rd to 7th layers) and combines it with
specularity information (8th layer) to produce a high-quality final image (9th layer).

is later extended by d’Eon et al. [dLE07, dL07] to develop a high-quality real-time skin
shader. They approximate the multipole model with a sum of Gaussians, and use them
to blur the irradiance signal in texture space. Since the Gaussians are separable, this
allows transforming the expensive 2D convolutions into a cheaper set of 1D convolutions.
This technique enables real-time frame rates, while giving results that are comparable to
o�ine simulations. In follow-up work, additional optimizations are introduced, based
on computing a single 2D convolution at 13 jittered sample points, which account for
direct reflection and two levels of scattering [HBH09]; unfortunately, 13 samples are not
enough for a 2D convolution, which leads to poor results.

Although these techniques provide real-time frame rates, they scale poorly with the number
of translucent objects in the scene, since the subsurface-scattering simulation needs to be
performed on a per-object basis. To overcome this, Jimenez et al. [JSG09, JG10] propose
to translate the simulation from texture to screen space. The di�use reflection of the
translucent object is blurred as a post-processing step employing the sum-of-Gaussians
formulation, thereby limiting subsurface scattering computations to the visible parts of
the objects. Other techniques operating in screen space include the work of Mertens et
al. [MKB+05], using importance sampling of the BSSRDF, Shah et al. [SKP09], who use
a splatting process for integration instead of a gathering step, and Mikkelsen [Mik10],
who shows how convolution with a Gaussian can be expressed as a cross bilateral
filter. Penner and Borshukov [PB11] pre-integrate the illumination e�ects of subsurface
scattering due to curvature and shadowing into textures, assuming that surface normals
can be pre-blurred, and that soft shadows are used. Recent real-time techniques use
the di�usion approximation to render optically thick materials [WZT+08], including
using finite elements and finite di�erences to support arbitrary, non-locally flat geometry
[WWH+10, LSR+13]. In contrast to these works, our Separable Subsurface Scattering
technique defers the blurring until the shading has been computed, thus retaining all
the geometric detail. Furthermore, it is simpler to implement and yields very high frame
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rates, suitable for the most challenging real-time scenarios.
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CHAPTER 3
Gaussian Material Synthesis

3.1 Motivation

Mass-scale photorealistic material synthesis is a labor-intensive endeavor where 3D artists
are asked to create a vast number of material variants with similar properties (e.g., metals,
minerals, or glassy materials). This requires a fair bit of trial and error and significant
domain expertise and is typically left to experts. In this work, we endeavored to address
the di�culties raised in Sections 1.3.2 and 1.3.4, i.e., enabling laypersons to be able to
operate a “principled” shader without any expertise in light transport, and speeding
up the rendering process during material modeling. Thus, we present a learning-based
system for rapid mass-scale material synthesis that is useful for novice and expert users
alike1. The user preferences are learned via Gaussian Process Regression and can be easily
sampled for new recommendations. Typically, each recommendation takes 40-60 seconds
to render with global illumination, which makes this process impracticable for real-world
workflows. Our neural network eliminates this bottleneck by providing high-quality
image predictions in real time, after which it is possible to pick the desired materials
from a gallery and assign them to a scene in an intuitive manner. Workflow timings
against Disney’s “principled” shader reveal that our system scales well with the number of
sought materials, thus empowering even novice users to generate hundreds of high-quality
material models without any expertise in material modeling. Similarly, expert users
experience a significant decrease in the total modeling time when populating a scene with
materials. Furthermore, our proposed solution also o�ers controllable recommendations
and a novel latent space variant generation step to enable the real-time fine-tuning of
materials without requiring any domain expertise.

21



3. Gaussian Material Synthesis

Figure 3.1: Our system opens up the possibility of rapid mass-scale material synthesis
for novice and expert users alike. This method takes a set of user preferences as an input
and recommends relevant new materials from the learned distributions. On the left, we
populated a scene with metals and minerals, translucent, glittery and glassy materials,
each of which was learned and synthesized via our proposed technique. The image on the
right showcases rich material variations for more than a hundred synthesized materials
and objects for the vegetation of the planet. The learning and recommendation steps
take less than a minute. The following materials were synthesized for the Microplanet
scene: dandelions (upper part of the planet, high color variation), daisies (the white color
is fixed, the core follows a slight color variation), staghorn tree (upper left), sweet pepper
bush (lower right), Kentucky blue grass and rye (general vegetation covering the planet),
the water stream in the middle (one material, extended shader). The following materials
were given: the bark of the staghorn tree in the upper left, the procedural dirt material
on the surface of the planet and the background HDR image.

3.2 Introduction

Light transport simulations are the industry standard way to create high-quality photoreal-
istic imagery. This class of techniques enjoys a variety of use in architectural visualization,
computer animation, and is rapidly becoming the choice of many mass media and enter-
tainment companies to create their feature-length films. Beyond using physically accurate
algorithms, the presence of complex material models and high-resolution geometry are
also important factors in creating convincing imagery. Choosing the perfect material
models is a labor-intensive process where an artist has to resort to trial and error, where
each try is followed by the lengthy process of rendering a new image. In this work, we

1
This chapter is based on our equivalently named paper [ZFWW18].
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Figure 3.2: Glassy materials learned and synthesized by our technique using 150 training
samples, 46 of which obtained a score greater than zero.

focus on providing tools for rapid mass-scale material synthesis to ease this process for
novice and expert users alike – Figures 3.2 and 3.3 showcase example scenes where our
technique was used to learn glassy and translucent materials. Instead of using a set of
specialized shaders for each desired material class, it is generally possible to design one
expressive shader that can represent a large swath of possible material models at the
cost of increased complexity, which is often referred to as a “principled” or “uber” shader
in the rendering community. Each parameterization of such a shader corresponds to one
material model. Our strategy is to create a principled shader that is highly expressive,
where the complexity downside is alleviated by the fact that the user never has to directly
interact with it. To achieve this, we harness the power of three learning algorithms
and show that this approach has several advantages compared to the classical workflow
(i.e., direct interaction with a “principled” shader): when using our framework, the user
is presented with a gallery where scores can be assigned to a set of proposed material
models. These scores are used as training samples to adapt to these preferences and
create new material recommendations. These recommendations are controllable, i.e.,
the user can choose the amount of desired variety in the output distribution, and our
system retains the degree of physical correctness of its underlying shader. Normally,
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each of these new recommendations would have to be rendered via global illumination,
leading to long waiting times. To alleviate this, we have replaced the renderer with a
neural network that is able to predict these images in real time. We use a third learning
algorithm to perform variant generation, which enables the user to fine-tune previously
recommended materials to their liking in real time without requiring any domain expertise.

Furthermore, we explore combinations of these learning algorithms that o�er useful
real-time previews and color coding schemes to guide the user’s attention to regions that
are ample in variants with a high expected score and are also deemed similar to the
fine-tuned input. We also show that our framework scales well with the number of sought
materials and that it o�ers favorable modeling times compared to the classical workflow.

In summary, we present the following contributions:

• a framework for mass-scale material learning and recommendation that works with
any high-dimensional principled shader,

• a Convolutional Neural Network to enable the visualization of the recommended
materials in real time,

• a latent space variant generation technique that helps the user to intuitively fine-tune
the recommended materials in real time,

• a novel way to combine all three learning algorithms to provide color coding for
e�cient latent-space exploration and real-time previews.

We provide our pre-trained neural network and the source code for the entirety of this
project. This work also contains a supplementary video with a high-level overview of our
system and a discussion of the results. We have also attached a compressed archive that
contains the following materials: GPR training data and full workflows for the glassy,
translucent, metals and minerals and glittery materials accompanied by 500 rendered
images in the gallery that can be scored by the user, and a Blender scene containing the
description of our principled shader.

3.3 Overview

The overall workflow of our system consists of two stages (see also Fig. 3.4)2. In the
first stage, the user is presented with a gallery and asked to assign scores to the shown
materials. After choosing a threshold value to control the variability of the output, a set
of recommendations are computed (Section 3.4.1) and visualized via neural rendering

2
In the Toy Tea Set scene, the volumetric absorption parameter for translucent materials is heavily

scale-dependent: if the scale of the scene is larger than the one shown in the material preview scene (e.g.,

the teapots are typically larger), its increased optical thicknesses will result in darker outputs. We have

slightly adjusted the absorptions to avoid this e�ect.
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3.3. Overview

Figure 3.3: This scene was generated using our automatic workflow. The recommendations
of our system are controllable, i.e., the user can easily adjust the recommendation
thresholds to fine-tune the amount of variety in the output distribution.

Figure 3.4: In the first step, the user is presented with a gallery and scores the shown
materials according to their taste. Then, a regression is performed to obtain a preference
function via Gaussian Process Regression, which can be e�ciently sampled for arbitrarily
many new material recommendations. These recommendations can be visualized in real
time using our neural network in a way that closely resembles the images rendered with
global illumination. In the final step, the recommended materials can be conveniently
assigned to an existing scene.

(Section 3.4.2). The recommendations depend entirely on the user scores and may span
multiple material classes. If the user wishes to fine-tune a subset of the recommended
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3. Gaussian Material Synthesis

materials, a latent space is inferred for low-dimensional exploration (Section 3.4.3). The
user then evaluates the result:

1. If the recommendations are acceptable – proceed to the next stage,

2. If the recommendations need refinement – assign scores to the newly proposed
gallery or adjust past rankings and compute a new round of recommendations.

In the second stage, the user can choose from two ways to assign the recommended
materials to a scene:

1. Automatic workflow – randomly assign the materials to the selected objects in the
scene (Figures 3.1 (right) and 3.3). This is ideal for mass-scale material synthesis,
when hundreds of materials are sought,

2. Assisted workflow – assign the materials to the scene manually and perform fine-
tuning via variant generation (Section 3.5.2), with color coding (Section 3.5.1).
This is ideal when up to a few tens of materials are sought and strict control is
required over the output (Figures 3.1 (left) and 3.16).

The final scene with the newly assigned material models is then to be rendered o�ine.
In Section 4.3 we first present the three learning algorithms, which can be used for the
automatic workflow by themselves, while in Section 3.5 we show how to combine them to
provide an interactive system.

3.4 Learning Algorithms for Material Synthesis

In this section, we outline the three main pillars of our system: Gaussian Process Re-
gression to perform material learning and recommendation, a Convolutional Neural
Network variant for real-time image prediction, and the Gaussian Process Latent
Variable Model to embed our high-dimensional shader inputs into a 2D latent space
to enable the fine-tuning of a select set of recommended materials (Fig. 3.5). Table 3.1
summarizes the notation used throughout this manuscript.

3.4.1 Material Learning and Recommendation

In this section, we propose a combination of Gaussian Process Regression, Automatic
Relevance Determination and Resilient Backpropagation to e�ciently perform material
learning and recommendation. We also show that these recommendations are easily
controllable.

26



3.4. Learning Algorithms for Material Synthesis

Material learning. Gaussian Process Regression (GPR) is a kernel-based Bayesian
regression technique that leverages prior knowledge to perform high-quality regression
from a low number of samples3. It can be used to approximate a preference function
u(x) from a discrete set of n observations U =

Ë
u(x1), u(x2), . . . , u(xn)

ÈT
, each of which

can be imagined as point samples of a Gaussian where xi œ Rm encode the parameters
that yield a BSDF model. We created a parameter space similar to Disney’s “principled
shader” [BS12] that comes in two versions: the m = 19 variant spans the most commonly
used materials, i.e., a combination of di�use, specular, glossy, transparent and translucent
materials where the extended m = 38 version additionally supports procedurally textured
albedos and displacements (see Section 5.11). A Gaussian Process is given by its mean
and covariance k(x, xÕ) that describes the relation between individual material samples x
and xÕ. A squared exponential covariance function is given as

k(x, xÕ) = ‡2
f exp

C

≠ (x ≠ xÕ)2

2l2

D

+ —≠1”xxÕ , (3.1)

with a given ‡2
f variance and length scale l where —≠1”xxÕ is an additional noise term

enabled by the Kronecker delta to yield a positive definite covariance matrix. This means
that a highly correlated pair Îx ≠ xÕÎ ¥ 0 yields the maximum of the function, i.e.,
k(x, xÕ) ¥ ‡2

f + —≠1”xxÕ , leading to a smooth function approximation as u(x) ¥ u(xÕ).
Conversely, if Îx ≠ xÕÎ is large, the two observations show negligible correlation, therefore
for a rapidly decaying covariance function, k(x, xÕ) ¥ 0.

The covariance matrix K is given by all possible combinations of the point samples

K =

S

WWWWU

k(x1, x1) k(x1, x2) . . . k(x1, xn)
k(x2, x1) k(x2, x2) . . . k(x2, xn)

...
... . . . ...

k(xn, x1) k(xn, x2) . . . k(xn, xn)

T

XXXXV
, (3.2)

the diagonal of K is therefore always ‡2
f + —≠1”xxÕ . The covariances for the unknown

sample xú are written as

kú =
Ë
k(xú, x1), k(xú, x2), . . . , k(xú, xn)

ÈT
, (3.3)

(where xi œ xú) and kúú = k(xú, xú). We define a zero-mean Gaussian Process overË
U, u(xú)

ÈT
with the covariance function k(x, xÕ):

C
U

u(xú)

D

≥ N
A

0,

C
K kT

ú
kú kúú

D B

. (3.4)

3
Throughout this manuscript, we will use the terms samples and observations interchangeably.
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3. Gaussian Material Synthesis

Figure 3.5: A high-level overview of our pipeline: GPR is used to learn the user-specified
material preferences and recommend new materials which are subsequently visualized
using our Convolutional Neural Network. Optionally, GPLVM can be used to provide an
intuitive 2D space for variant generation.

We seek u(xú) leaning on the knowledge that the conditional probability P (u(xú) | U)
follows a Gaussian distribution, therefore the closed-form solution for u(xú) and its
variance is obtained by

u(xú) = kT
ú K≠1U,

‡(u(xú)) = kúú ≠ kúK≠1kT
ú . (3.5)

The quality of the regression depends on the choice and the parameterization of the
covariance function. If ◊ = {‡2

f , l} in (3.1) is chosen poorly, the result will su�er from
severe over- or underfitting. To avoid this, a model selection step is performed to maximize
the log-likelihood of the observed samples by choosing the appropriate hyperparameters,
i.e.,

log P
!
U|x, ◊

"
= ≠1

2UT K≠1U ≠ 1
2 log |K| ≠ n

2 log 2fi. (3.6)
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3.4. Learning Algorithms for Material Synthesis

Symbol Description Type

x BSDF description Vector
uú(x) Preference function (Ground truth) Scalar
u(x) Preference function (GPR prediction) Scalar

n Number of GPR samples Scalar
xú Unknown BSDF test input Vector
U GPR training set Matrix
m Input BSDF dimensionality Scalar

k(x, xÕ) Covariance function Scalar
‡2

f Variance Scalar
l Length scale Scalar

—≠1 Noise term Scalar
”xxÕ Kronecker delta Scalar
K GPR covariance matrix Matrix
◊ Covariance function parameterization Vector
– Learning rate Vector

„(xú) CNN image prediction of a BSDF Matrix
X GPLVM training set Matrix
L Low dimensional latent descriptor Matrix
l Latent space dimensionality Scalar

N (x| µ, ‡2) 1Ô
2fi‡2 exp(≠ (x≠µ)2

2‡2 ) Scalar
z Number of GPLVM samples Scalar

KÕ GPLVM covariance matrix Matrix
Â(lú) Mapping from latent to observed space Vector
m(x) 1

2(u(x) + uú(x)) Scalar
· Recommendation threshold Scalar
r Grid resolution Scalar

s(xú, xÕ) Similarity (CNN prediction) Scalar
u(xÕ) Preference score (GPR prediction) Scalar

Table 3.1: Notation used throughout this work, in order of occurrence.

The derivatives of the log-likelihood with respect to the hyperparameters and a learning
rate – are given by

ˆ

ˆ◊j
log P

1
U|x, ◊

2
= ≠1

2 tr
I 1

––T K≠1
2 ˆK

ˆ◊j

J

, (3.7)

which can be used with gradient-based optimization techniques. In some cases, the
user is looking for a class of material models where, for instance, the surface reflectance
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3. Gaussian Material Synthesis

properties are of great importance and the choice of albedos is irrelevant (e.g., carpaint
material variants). In this case, using one fixed length scale for all features leads to
poor predictions. To this end, we have also used Automatic Relevance Determination
[Mac96, Nea12] and assigned a ◊ to each dimension (with appropriate modifications to
(3.1)) to open up the possibility of discarding potentially irrelevant features. However,
this substantially increases the dimensionality of the optimization problem, to a point
where classical methods such as L-BFGS-B [BLNZ95] and the Scaled Conjugate Gradient
method [Møl93] prove to be ine�ective: lower learning rates are theoretically able to
find the desired minima, but slow down considerably in shallow regions while larger
learning rates introduce oscillation near the minima. To this end, instead of using a fixed
step size that is proportional to the local gradient, we adapt the learning rate based on
the topology of the error function by using Resilient Backpropagation [RB92, BR13], a
technique originally designed for training neural networks. This significantly reduces the
number of required learning steps and has always succeeded finding usable minima in
our experiments.

Material recommendation. Given enough learning samples, u will resemble the true
user preferences, therefore high-scoring material recommendations can be obtained by
simply rejection-sampling it against a minimum acceptable score threshold. The rejection
rates depend on the properties of u: choosing a high threshold will result in high-quality
recommendations at the cost of higher rejection rates and decreased variety. Conversely,
a larger variety of recommendations can be enforced by lowering the target threshold.
Upon encountering a rejection ratio that is unacceptably high, we extend the rejection
sampler with a low number of stochastic hillclimbing steps. This o�ers a considerably
improved ratio at the cost of a minimal increase in sample correlation. Generally, we
have found setting the recommendation threshold between 40% and 70% of the maximum
possible score to be a good tradeo� between sample quality and variety (Fig. 3.3, higher
quality (left) – 70%, more variety (right) – 40%).

3.4.2 Neural Networks and Rendering

After the learning and recommendation step have taken place, a gallery is generated
with a prescribed amount of recommendations. The GPR and the recommendation
steps take only a few seconds (Table 3.3), however, rendering all 300 recommendations
(a typical number throughout our experiments) would take over 4 hours, which is a
prohibitively long time for practical use. To cut down the time between the two steps, we
introduce a neural network-based solution. Deep neural networks are universal function
approximators that have proven to be remarkably useful for classification and regression
problems. Typically, the dimensionality of the input is orders of magnitude larger than
that of the output (e.g., image classification). Convolutional Neural Networks [LBBH98]
(CNNs) excel at solving problems of this form; their advantages include augmenting
neurons with a receptive field to take advantage of the locality of information in images
and their pooling operations that reduce the number of parameters in each layer. In this
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3.4. Learning Algorithms for Material Synthesis

Figure 3.6: Our decoder network takes the shader description as an input and predicts
its appearance. Due to the fact that we have an atypical problem where the input
shader dimensionality is orders of magnitude smaller than the output, the input signal is
subjected to a series of 1D convolution and upsampling steps.

work, we are concerned with an atypical adjoint problem where images are to be predicted
pixel by pixel from the shader input, „ : RmæRp, where the input dimensionality m is in
the order of tens, which is to be mapped to an output of p dimensions, which represents
the largest possible output that fits into the GPU memory along with its decoder network,
i.e., in our case, a 4102 image with three color channels. We will refer to problems of this
kind as neural rendering.

Neural rendering remains an unsolved problem in general. However, as our case is
constrained to material modeling, the geometry and lighting setups can be kept constant,
therefore it is possible to create a su�ciently deep network and training set to predict
images that are nearly indistinguishable from the ones rendered until convergence with
full global illumination. Using deconvolutional layers [ZKTF10, NHH15] would be a
natural choice for „, however, as few of the most common software packages support it
and unwanted artifacts may appear during image generation [ODO16], instead, the input
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3. Gaussian Material Synthesis

Figure 3.7: The best (left side) and worst-case (right side) predictions by our neural
network on a set of 250 images. Mean PSNR: 37.96dB, minimum: 26.05dB, maximum:
48.70dB.

signal is subjected to a series of 1D convolutions 4, each followed by an upsampling layer
to inflate the number of parameters as we advance deeper into the network (Fig. 3.8).

This architecture is similar to the decoder part of Convolutional Autoencoders
[MMCS11] and can be described with the shorthand notation of 4x{Conv1D(64, 3, 1) –
Upsampling(2)} – FC(1000) – FC(4102 ·3), where the parameters of the convolutional
layer are number of filters, spatial kernel size and strides, respectively. These layers
use exponential linear units [CUH15] with Glorot-initialization [GB10] and are trained
via the Adam optimizer [KB14] (lr=10≠3, —1=0.9, —2=0.999, ‘=10≠8, decay=0). Nor-
mally, a network of this size introduces severe overfitting, even in the presence of L1/L2
regularization [NH92, ZH05] or dropout [SHK+14], especially if learning takes place on
a given, fixed dataset. However, as we can create our own dataset, i.e., a potentially
infinite number of shader-image pairs via rendering, we are able to evade this problem by
creating a su�ciently large training set. In the interest of e�ciency, we have generated
45000 LDR shader-image pairs with a spatial resolution of 4102 and 250 samples per
pixel over 4 weeks on a consumer system with a NVIDIA GeForce GTX TITAN X GPU,
and since no means were required to prevent overfitting, our training process converged
to 10≠2 (RMSE), a negligible but non-zero L2 training and validation loss (where a zero
loss would mean containing all the noise from the training set) in less than 30 hours.
Our validation set contained 2500 images and the measured losses correlated well with

4
The input of the network is a set of shader parameters that bear some locality, as e.g., R,G,B albedos

for a material node are often adjacent. However, they have no meaningful 2D spatial relation to each

other, therefore 1D convolutions are preferable.
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Figure 3.8: An additional desirable property of our proposed neural network is that
it contains just enough layers to infer the most important features, but not enough to
represent the high-frequency noise in the dataset.

real-world performance. This pre-trained network can be reused as long as the shader
description remains unchanged and the inference of a new image typically takes 3 to
4 milliseconds. A further advantage of this architecture is that similarly to Denoising
Autoencoders [VLL+10], it also performs denoising on the training samples. This noise
filtering property of the neural network is subject to a tradeo� – adding more layers
leads to more faithfully rendered images at the risk of additionally fitting the noise in
the dataset. A more principled approach could be developed by using modern neural
network visualization techniques to observe the amount of noise contained within the
filters [OSJ+18].

A key observation is that the more layers the neural network contains, the more high-
frequency details it will be able to represent (a similar e�ect has been observed in Fig 4.,
Saito et al. [SWH+16]). This means that our proposed neural network contains enough
layers to capture the important features to maximize visual quality, but not enough to
learn the high-frequency noise contained in the dataset (Fig. 3.8). Normally, this denoising
process requires the presence of auxiliary feature bu�ers and longer computation times
[SD12] or other deep learning approaches using more complex architectures [BVM+17].
In our case, this step does not require any additional complexity and is inherent to the
structure of our network. Beyond producing less noisy images in real time, this is also a
significant advantage in easing the computational load of creating new datasets as the
training images do not have to be rendered until convergence. We took advantage of this
by using only 250 samples per pixel for each training image, which took six times less
than the standard 1500 samples that would be required for perfectly converged training
samples, cutting down the total time to produce the training set from 24 to 4 weeks.
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Initially, instead of synthesizing the corresponding images for new recommended sample
points, using the images from the training database instead appears to be a reasonable
optimization option. The issue of this approach is that it is struck with the curse of
dimensionality; if one generates n training points on [0, 1]m with uniform distribution,
and the average L2 distance between a new random query point and the closest database
match is 0.71 when m = 19, n = 17 ·104 (simpler shader) and 1.45 for m = 38, n = 17 ·104

(extended shader). This di�erence is significant as some shader parameters are non-linear
and a di�erence of 10≠1 in the index of refraction or glass roughness leads to a drastically
di�erent material appearance or non-physical results. We note that we obtained these
results via a Monte Carlo simulation as a complete proof of this result would be overly
verbose (e.g., the average distance is close to 0.52 for m = 2, n = 1 [MMP99, BP09]).

3.4.3 Latent Space Variant Generation

After being presented with a gallery of material models, the user may find that some
recommendations are close to their preference, but some require fine-tuning to fit their
artistic vision for a scene. Adjusting the materials by hand requires domain expertise
and a non-trivial amount of trial and error. In our solution, we seek a dimensionality
reduction technique that maps the shader inputs into a 2D latent space where similar
materials can be intuitively explored. Non-linear manifold learning techniques come
as a natural choice for this kind of problem, however, the most well-known methods
[BN03, MH08, TDSL00] could not find coherent structures in 2D. Beyond that, these
techniques are unable to interpolate between the embedded samples, therefore they would
only be useful for visualization in a latent space, but not for exploration. Dimensionality
reduction with autoencoders [HS06] would require orders of magnitude more samples
to work properly (we have at most a few tens at our disposal), which is infeasible as it
would be too laborious for the user to provide that many scores through the presented
gallery.

The Gaussian Process Latent Variable Model (GPLVM) [Law04] is a non-linear dimen-
sionality reduction technique which is able to embed a few tens of high-scoring materials
from the gallery X =

Ë
· · · xi · · ·

ÈT
with xi œ Rm into a set of low dimensional latent

descriptors L =
Ë
· · · li · · ·

ÈT
with li œ Rl. Typically, m∫ l, in our case, m = 19 and l = 2

to make sure that variant generation can take place conveniently on a 2D plane. The
likelihood of the high-dimensional data using z high-scoring training samples is given as

P
1
X|L, ◊

2
=

zŸ

i=1
N

1
Xi| 0, KÕ+ —≠1I

2
, (3.8)

where KÕ is a covariance matrix similar to K containing elements akin to (3.1) with a
substitution of k(x, xÕ) æ k(l, lÕ). In this case, the optimization takes place jointly over
the latent values in L and ◊, i.e.,

Lú, ◊ú = argmax
L,◊

log
Ë
P

1
X|L, ◊

2È
. (3.9)
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Figure 3.9: Endowing the latent space with the expected preferences (upper left) and
similarities (lower right). The green dots represent the embedded training samples, where
the blue dot shows the reference input material to be fine-tuned.

Even though PCA disregards the non-linear behavior of BSDF parameters [LFTG97], it
serves as a formidable initial guess for L [Law04] and ◊ is initialized with a wide prior.
Beyond the ability to learn e�ciently from a handful a samples, a further advantage of
this method is that a new mapping can be made between the latent and observed space
xú = Â(lú), i.e.,

C
X
xú

D

≥ N
A

0,

C
KÕ kÕT

ú
kÕ

ú kÕ
úú

D B

, (3.10)

yielding the final closed-form solution

Â(lú) = kÕT
ú KÕ≠1X,

‡(Â(lú)) = kÕ
úú ≠ kÕ

úKÕ≠1kÕT
ú . (3.11)

By storing and reusing KÕ≠1, this mapping can be done in negligible time, which allows
the user to rapidly generate new material variants in this 2D latent space.
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3.5 Interactive Latent Space Exploration

We have introduced a system using three learning algorithms in isolation. GPR enables
material learning and recommendation from a few learning samples, the CNN opens up
the possibility of neural rendering, and the high-dimensional shader can be non-linearly
embedded in a 2D latent space using GPLVM. In this section, we propose novel ways to
combine these algorithms to obtain a system for rapid mass-scale material synthesis and
variant generation. A more rigorous description of the final algorithm is presented in
Section 3.5.3.

3.5.1 GPLVM Color Coding

When using GPLVM, each point in the 2D latent space corresponds to an m-dimensional
vector that describes a material model. Since we have used GPR to learn the correspon-
dence between these materials and user preferences, it is possible to combine these two
techniques to obtain the expected scores for these samples. This combination enables a
useful visualization of the latent space where these expected preferences appear in the
form of color coding. This preference coding is useful to highlight regions of the latent
space that encode favorable materials, however, when fine-tuning a chosen material, the
requirement of obtaining similar materials is of equal importance. Since our CNN is able
to predict images in real time, we propose subdividing the latent space into a 2D grid,
where an image can be predicted in each gridpoint. This image can be compared to the
image of the material we wish to fine-tune via a distance metric of choice (e.g., L1/L2),
therefore, the latent space can thus be endowed with similarity information as well.

The preference map is global, i.e., it remains the same regardless of our input material
where the similarity map depends on our current material that is used as a starting point
(Fig. 3.9). The product of these two maps o�ers an e�ective way to create variants of
a source material that are similar, and are highly preferred according to the learned
preferences.

3.5.2 Real-Time Variant Generation

Exploring the 2D latent space of the learned materials is of limited usefulness when the
user has to wait for 40-60 seconds for each new image to be rendered. A typical use case
involves sweeping motions that require near instantaneous feedback from the program.
As the 2D output of the GPLVM can be projected back to the high-dimensional material
space (with a dimensionality increase of l æ m), this output can be combined with our
CNN, which provides real-time image predictions to allow e�cient exploration in the
latent space with immediate feedback. We demonstrate several such workflows in our
supplementary video.
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3.5.3 Pseudocode and Shader Description

We provide the full pseudocode of our system in Algorithms 1-3. Note that the symbol
“_” in lines 7, 14 and 16 refer to throwing away part of the function return value (i.e.,
using only the first dimension of the output of a 2D function).

Algorithm 1 Gaussian Material Synthesis
1: given ·, r Û Recommendation threshold, grid resolution
2: for i Ω 1 to k do Û k GPR training samples
3: Generate random BSDF x
4: Ui Ω u(x)
5: X Ω

)
x œ U | x > ·

*
Û GPLVM training set

6: for i Ω 1 to l do Û Recommendations
7: while Score(X, x, —≠1) < ·, _ do
8: Generate random x
9: Rl Ω x

10: Choose xú œ R for variant generation
11: Display „(xú)
12: for i, j Ω 1 to r do Û GPLVM color coding, Section 3.5.1
13: init Gij gridpoint with coordinates i, j and resolution r
14: xÕ

, _ Ω Latent (X, Gij , 2, —≠1)
15: s(xú, xÕ) Ω ||„(xú) ≠ „(xÕ)||L2 Û Similarity (CNN)
16: u(xÕ), _ Ω Score(U, xÕ, —≠1) Û Preference (GPR)
17: Tij Ω s(xú, xÕ)u(xÕ) Û Store product coding
18: assign color Tij to gridpoint Gij

19: while Given user displacement ” do Û Explore latent space
20: Display „(xú + ”)

Algorithm 2 Scoring a new BSDF
1: function Score(U, xú, —≠1) Û Score new BSDF, Section 3.4.1
2: init K, ◊
3: ◊ú Ω argmax◊ log

#
P (U|x, ◊)

$

4: u(xú) Ω kT
ú K≠1U

5: ‡(u(xú)) Ω kúú ≠ kúK≠1kT
ú

6: return u(xú), ‡(u(xú))

Our shader is defined as a combination of a set of base BSDFs and mix shaders that
return a linear interpolation of two inputs. In the following description, the numerical
ID, BSDF model names and their parameters are enumerated.
1: Di�use BSDF (r,g,b albedos), 2: Beckmann Glossy BSDF (r,g,b albedos, roughness),
3: Mix shader (connect 1,2), 4: Beckmann Glass BSDF (r,g,b albedos, roughness, IOR),
5: Translucent BSDF (r,g,b albedos), 6: Mix shader (connect 4,5), 7: Mix shader
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Algorithm 3 Latent space mapping
1: function Latent(X, xú, l, —≠1) Û Latent mapping, Section 3.4.3
2: given xú = Â(lú)
3: init KÕ

, ◊

4: Lú, ◊ú Ω argmaxL,◊ log
Ë
P

1
X|L, ◊

2È

5: Â(lú) Ω kÕT
ú KÕ≠1X

6: ‡(Â(lú)) Ω kÕ
úú ≠ kÕ

úKÕ≠1kÕT
ú

7: return Â(lú), ‡(Â(lú))

Table 3.2: All three optimization techniques produce competitive JSD values in the
lower dimensional case (i.e., m = 19). In the case of the extended shader (m = 38),
RProp consistently outperforms L-BFGS-B and SCG regardless of the number of training
samples (n).

Scene m n RProp L-BFGS-B SCG

Glassy 19 150 0.08 0.10 0.08
Glassy 19 250 0.09 0.09 0.08
Glassy 19 500 0.07 0.07 0.07

Translucent 19 150 0.17 0.18 0.18
Translucent 19 250 0.19 0.19 ≠
Translucent 19 500 0.17 0.17 0.17

Glassy 38 150 0.41 0.58 0.58
Glassy 38 250 0.35 0.57 0.57
Glassy 38 500 0.14 0.53 0.38

Metals/Minerals 38 150 0.53 0.55 0.55
Metals/Minerals 38 250 0.44 0.52 ≠
Metals/Minerals 38 500 0.32 0.62 0.60

(connect 3,6).
The volume absorption for the Glass and Translucent BSDFs are inherited (and shared)
from a separate node. The extended shader contains a combination of several noise
models, a similar mixing logic and individual weighting factors to control. In the interest
of simplicity, we provide a visual description of this shader in Fig. 3.12.

3.6 Results

In this section, we evaluate the three learning algorithms in isolation and demonstrate the
utility of our whole system by recording modeling timings against the classical workflow
for three practical scenarios. Furthermore, we also discuss how the proposed system
handles our extended shader.
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3.6. Results

Learning material spaces. After having obtained u, we are interested in measuring
the quality of the regression by relating it to the true user preference function uú. By
normalizing both functions and treating them as probability distributions, the Jensen-
Shannon divergence (JSD) yields a suitable metric to distinguish how much information
is lost if u is used as a proxy for the unknown uú, i.e.,

JSD
!
u(x) || uú(x)

"
=

1
2

⁄ +Œ

≠Œ
u(x) log u(x)

m(x) dx + 1
2

⁄ +Œ

≠Œ
uú(x) log uú(x)

m(x) dx,
(3.12)

where m(x) = 1
2
!
u(x) + uú(x)

"
. We have recorded the JSD produced by minimizing (3.7)

with RProp, L-BFGS-B and the Scaled Conjugate Gradient method and found that all
three techniques are competitive for the lower-dimensional case, i.e., m = 19. In the case
of the extended shader, RProp consistently outperformed L-BFGS-B and SCG, both of
which often got stuck in poor local minima even when being rerun from many randomized
initial guesses (Table 3.2). For the high-dimensional cases with over 200 training samples,
SCG did not always converge despite a non-singular K due to round-o� errors.

We have used two challenging cases to demonstrate the utility of our system by learning
the material space of glassy and translucent materials. These cases are considered
challenging in a sense that these materials are relatively unlikely to appear via random
sampling: in the glassy use case, 81% of the samples in the initial gallery were scored zero.
This ratio was 90% for the translucent case. This means that the recommender system
has to learn the appropriate sample distribution from a modest number of non-zero data
points. We have scored 1000 glassy and translucent materials on a scale of 0 to 10 to use
as a ground truth dataset, where the first 250 samples were used as training data for the
GPR. In each case, our technique was able to generate high-quality recommendations
from 46 (glassy) and 23 (translucent) non-zero observations. The remaining 750 samples
were used for cross-validation to compute a reliable estimate of the JSD. In both cases,
the training took 7.22s and as a result, an arbitrarily large gallery of recommendations
can be generated in 0.06s per recommendation on a mid-range consumer Intel Core
i5-6600 CPU (see Table 3.3 for a detailed breakdown). The metals and minerals scene in
Fig. 3.10 showcases a multi-round learning scenario where the recommendation gallery
was scored and re-used to generate a second, more relevant gallery of materials (all other
cases use one round of scores)5.

Human biases. We have identified several recurring biases throughout our experiments.
For instance, when the gallery is presented as a 2D grid, the score of a material often
depends on its surroundings, e.g., it is typically rated higher when the material is

5
If the recommendations are in line with the user’s artistic vision, but require fine-tuning, assigning

scores to the newly created gallery and using them as training data for one more round is expected to

improve the relevance of the recommendations (we used a two-round scheme for metals and minerals).

Since these new samples are concatenated to the previous scores, it is advisable to first make sure that

the scores from the first round do not contain many conflicting decisions. If the recommendations are not

at all acceptable, it is advisable to revisit the initial rankings.
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3. Gaussian Material Synthesis

surrounded by unfavorable examples. Users are also typically more susceptible to assign
a high score to a mediocre sample early in the process before they have seen the best
matches the shader has to o�er. The perception of di�erent light simulation e�ects
may also introduce imperfections in the scoring process, e.g., the e�ect of translucency
is di�cult to recognize in moderation, and therefore there are barely any mid-scoring
samples, with most scores being either extremely low or high. In Fig. 3.17, we show that
due to these biases, the Jensen-Shannon Divergence does not recede to zero as we add
more training samples, and that despite these distortions, it is still possible to perform
regression and material recommendations of acceptable quality.

Variant generation. A synthesized material of choice can be fine-tuned via variant
generation in our 2D latent space. The exploration is guided by two di�erent kinds of
color-coding and real-time previews of the final materials. We demonstrate the usefulness
of this element of our system in a real-world scenario by reducing the vividness of the
grape material in the glassy still life scene (Fig. 3.16 and supplementary video). The
color-coded regions denote outputs that are preferred and similar to the input material
and form an island that is easy to explore. The preference and similarity maps are
computed on a 502 and 202 grid respectively using an NVIDIA GeForce GTX TITAN X
GPU and are subjected to bilinear interpolation in our visualizations.

Neural rendering comparisons. Because of our restricted problem definition, our
neural network can mimic a global illumination renderer with high-quality predictions,
and does not require retraining when combined with a su�ciently expressive principled
shader. Three average case predictions are shown in Fig. 3.4 (middle). Three of the
best- and worst-case predictions and their di�erence images as well as PSNR values are
reported on a set of 250 images in Fig. 3.7. Querying this neural network takes 3-4ms on
average and in every case, the predicted images were close to indistinguishable from the
ground truth. An additional advantage our proposed architecture is that even though the
training set contained moderately noisy images (250 spp, visible in the floating image in
Section 3.4.2 and zooming in to the “Gallery with scores” part of Fig. 3.4), the predicted
images appear smoother. We have also computed the PSNR error values against the
ground truth, and have found that they were comparable, i.e., 37.9dB for the predictions
and 40.2dB for the training set when compared against the ground truth. In our work,
we argue that the visual quality of the predictions is higher because of the denoising
property of the neural network. The measured PSNR is slightly lowered by the fact that
some predicted images are o� by a few points of brightness value; these are distributed
uniformly over the image and are hence imperceptible for the user.

Modeling and execution time. To show that our system is useful for novice and
expert users alike, we recorded the time required to model 1, 10, and 100 similar materials
using Disney’s “principled” shader [BS12] against our technique. The two main user types
to be compared to is a novice user who has no knowledge of light transport and material
modeling, and an expert with significant experience in material modeling. Both were
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Stage Time [s] Size

GPR 7.22 250
Recommendation 0.06 / 17.4 1 / 300
GPLVM 1.96 16
CNN 0.04 4102

Preference coding 2.75 502

Similarity coding 8.15 202

Sum 20.18 / 37.52

Table 3.3: Execution times for di�erent stages of the proposed method. The ’Size’
column stands for the size of the problem at hand, i.e., training samples for GPR and
GPLVM, number of recommended materials, image resolution for the CNN, and 2D
spatial resolutions for preference and similarity coding.

allowed several minutes to experiment with the principled shader before starting. The
novice and expert users took 161s and 52s to obtain one prescribed base material model
(a slightly scattering blue glass material with a small, non-zero roughness). Creating
subsequent variants of this material took 29s and 19s where most of the time was spent
waiting for a reasonably converged rendered image to show the minute di�erences between
the base material and the new variant. Using our technique, in the presented gallery, it
took an average of 2s to score a non-zero sample and 0.4s for a sample with the score
zero. Typically, in our workflows, 250 observations were used to learn the material spaces
and provide recommendations therefore we based our timings on that number. When
only one material model is sought, novice users experience roughly equivalent modeling
times when using our proposed system. In the case of mass-scale material synthesis,
modeling times with our system outperform expert users. Beyond cutting down the
time spent with material modeling, our system provides several other advantages over
the traditional workflow: it does not require any domain expertise, provides real-time
denoised previews throughout the process, and during scoring, the users are exposed to a
wider variety of examples. This last advantage is especially useful for novices who do not
necessarily have a prior artistic vision and are looking for inspiration. We also note that
the workflow timings are often even more favorable as 150 samples are enough to provide
satisfactory results for learning challenging material spaces (Fig. 3.17). Our intention in
Fig. 3.18 was to show that our timings are appealing even in the more pessimistic cases.
Furthermore, we have found that the fixed cost of the direct interaction with a principled
shader is consistent among users. Our expert and novice users noted that most of their
time was spent waiting for noise to clear up in the rendered images when a parameter is
changed. This e�ect is particularly pronounced during variant generation, where the user
has to wait until the minute di�erences between the old and new variant are revealed.
This is a shortcoming that is inherent in the fact that all images have to be re-rendered
and remains true for all users.
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Adding displacements. In the results shown so far, we have used a shader with
m = 19 as a basis for the training process, however, the GPR and GPLVM steps are
capable of learning significantly higher-dimensional inputs. To demonstrate this, we have
created a higher-dimensional SVBRDF shader that includes procedural textures and
displacements. This shader (m = 38) is even more in line with our design principles, i.e.,
more expressive at the cost of being less intuitive, which is alleviated by using learning
methods instead of interacting with it directly. In this case, material recommendation
and learning steps still perform well – we have used 500 samples to learn metals and
minerals and 150 samples for glittery Christmas ornament materials (Fig. 3.10). The
limitation of this extended shader is the fact that it is ample in localized high-frequency
details that our CNN was unable to represent. We note that this is a hardware limitation,
and by adding more layers, more of these details are expected to appear, our architecture
will therefore be able to predict these features as further hardware advancements take
place, noting that this may require a higher sampling rate for the training set. After the
recommendation and material assignment steps, displacements can be easily added by
hand to the simpler shader setup (as shown in the supplementary video).

3.7 Future Work

Our technique starts out by showing a randomly generated gallery to the user to obtain a
set of scores. These BSDFs are sampled with uniform distribution. We have experimented
with improving it with an active learning scheme [KGUD07] to introduce adaptivity to
the sampling process, making the newer gallery elements more relevant as they depend
on the user-specified scores. For instance, the sampler can be equipped with novelty
search [LS11, LS08] to aggressively look for unexplored regions that may be preferred
by the user. Furthermore, after obtaining the first few samples, quick GPR runs can
take place, and instead of standard uniform distribution, the upcoming gallery images
can be drawn from this learned intermediate distribution. We have found this scheme
highly e�ective, and in the supplementary materials, we provide a case with a “two-round”
recommendation run for metals and minerals. Novice users can be further aided through
automatic variant generation of new material(s) xÕ to fine-tune an input xú by maximizing
⁄s(xú, xÕ) + (1 ≠ ⁄)u(xÕ) for a multitude of di�erent ⁄ œ (0, 1) choices instead of relying
solely on maximizing u(xÕ) for recommendations (see Table 3.1 for details on the notation).
By using GPR and GPLVM, not only the regressed outputs, but also their confidence
values can be visualized (Equations (3.5) and (3.11)), or used as additional information for
active learning. High-dimensional measured BRDF representations may also be inserted
into the system. Due to the increased parameter count, the GPR should be replaced
by a regressor that scales more favorably with the number of input dimensions, e.g., a
deep neural network. As this also requires the presence of more training samples during
the regression step, nearby regions in the similarity map could be channeled back to
the neural network as additional data points. Since there is no theoretical resolution
limit for the image predictions, our CNN can be retrained for higher resolutions as GPU
technology improves, leaving room for exciting future improvements. To further enhance
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the quality of the neural network outputs, we have implemented the “late fusion” model
in Karpathy et al.’s two-stream architecture [KTS+14] and experienced measurable, but
marginal improvements. As this area is subject to a significant volume of followup works,
we expect that this direction, alongside with rapid improvements in GPU technology will
lead to the possibility of predicting outputs with more high-frequency details in full HD
resolution in the near future. Variable light source types, positions, and camera angles
can also be learned by the neural network to enhance the quality of gallery samples by
showing animations instead of stationary images.

3.8 Conclusions

We have proposed a system for mass-scale material synthesis that is able to rapidly
recommend new material models after learning the user preferences from a modest
number of samples. Beyond this pipeline, we also explored combinations of the three used
learning algorithms, thereby opening up the possibility of real-time material visualization,
exploration and fine-tuning in a 2D latent space. Furthermore, the system works with
arbitrary BSDF models and is future-proof, i.e., preference learning and recommendation
works with procedural textures and displacements, where the resolution and visualization
quality is expected to further improve as the graphics card compute power and on-board
VRAM capacities grows over time. Throughout the scoring and recommendation steps,
the users are shown noise-free images in real time and the output recommendation
distribution can be controlled by a simple change of a parameter. We believe this
feature set o�ers a useful solution for rapid mass-scale material synthesis for novice and
expert users alike and hope to see more exploratory works harnessing and combining the
advantages of multiple learning algorithms in the future.

Several important challenges still remain: artists with general image-processing knowledge
are unable to leverage their knowledge beyond assigning scores in the initial gallery, and
the rendering process for subsurface light transport remains in the order of minutes to
hours, which is prohibitively long for real-time material modeling tasks. We address
these challenges in the next two chapters.
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Figure 3.10: Synthesized glittery materials (above) followed by metals and minerals
(below) using our extended shader.

44



3.8. Conclusions

Figure 3.11: The Microplanet scene from the teaser image, magnified.

Figure 3.12: Our principled shader for generating a wide variety of possible displacements.
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Figure 3.13: The Toy Tea Set scene showcasing translucent material models learned by
our technique.

Figure 3.14: Gaussian Process Regression in 1D and the corresponding JSD and execution
timings.

46



3.8. Conclusions

Figure 3.15: The Still Life scene from the teaser image, magnified.
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Figure 3.16: The color-coded 2D latent space can be explored in real time by the user for
variant generation. The vividness of the recommended grape material can be fine-tuned
rapidly without any domain knowledge.
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Figure 3.17: Even for more challenging cases, the presence of Automatic Relevance
Determination stabilizes the GPR reconstruction quality around 150-250 training samples.
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Figure 3.18: Time taken to generate 1, 10, and a 100 similar materials by hand for users
of di�erent experience levels versus our technique (with the GPR and recommendations
steps).
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CHAPTER 4
Photorealistic Material Editing

4.1 Motivation

In our previous work above, we have proposed one solution for the di�culties discussed
in Sections 1.3.2 and 1.3.4, i.e., sped up the material visualization process by using a
neural renderer and enabled novice and expert users alike to access the expressivity of
principled shaders in an e�cient manner. In the following work, we propose a technique
that does not require the artist to assign a set of scores, and provides a solution almost
immediately upon entering a mockup image of the sought material1. In the proposed
workflow, the user starts with an input image and applies a few intuitive transforms (e.g.,
colorization, image inpainting) within a 2D image editor of their choice, and in the next
step, our technique produces a photorealistic result that approximates this target image.
Our method combines the advantages of a neural network-augmented optimizer and an
encoder neural network to produce high-quality output results within 30 seconds. We
also demonstrate that it is resilient against poorly-edited target images and propose a
simple extension to predict image sequences with a strict time budget of 1-2 seconds per
image.

4.2 Introduction

The expressiveness of photorealistic rendering systems has seen great strides as more
sophisticated material models became available for artists to harness. Most modern
rendering systems o�er a node-based shader tool where the user can connect di�erent
kinds of material models and perform arbitrary mathematical operations over them (e.g.,
addition and mixing), opening up the possibility of building a richer node graph that

1
This chapter is based on our Photorealistic Material Editing Through Direct Image Manipulation

paper [ZFWW19].
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Figure 4.1: We propose a hybrid technique to empower novice users and artists without
expertise in photorealistic rendering to create sophisticated material models by applying
standard image editing operations to a source image. Then, in the next step, our method
proceeds to find a photorealistic BSDF that, when rendered, resembles this target image.
Our method generates each of the showcased fits within 20-30 seconds of computation
time and is able to o�er high-quality results even in the presence of poorly-executed edits
(e.g., the background of the gold target image, the gold-colored pedestal for the water
material and the stitched specular highlight above it). Scene: Reynante Martinez.

combines many of the more rudimentary materials to achieve a remarkably expressive
model. These are often referred to as “principled” shaders and are commonly used within
the motion picture industry [BS12]. However, this expressiveness comes with the burden
of complexity, i.e., the user has to understand each of the many parameters of the shader
not only in isolation, but also how they influence each other, which typically requires
years of expertise in photorealistic material modeling. In this work, we intend to provide
a tool that can be used by a wider target audience, i.e., artists and novices that do not
have any experience creating material models, but are adept at general-purpose image
processing and editing. This is highly desirable as human thinking is inherently visual
and is not based on physically-based material parameters [RSB+02, Whi89]. We propose
a workflow in which the artist starts out with an image of a reference material and applies
classic image processing operations to it. Our key observation is that even though this
processed target image is often not physically achievable, in many cases, a photorealistic
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Figure 4.2: To demonstrate the utility of our system, we synthesized a new material and
deployed it into an already existing scene using Blender and Cycles. In this scene, we
made a material mixture to achieve a richer and foggier nebula e�ect inside the glass.
Left: theirs, right: 50% theirs, 50% ours. Scene: Reynante Martinez.

material model can be found that is remarkably close to it (Fig. 4.3). These material
models can then be easily inserted into already existing scenes by the user (Fig. 4.2).

In summary, we present the following contributions:

• An optimizer that can rapidly match the target image when given an approximate
initial guess.

• A neural network to solve the adjoint rendering problem, i.e., take the target image
as an input and infer a shader that produces a material model to approximate it.

• A hybrid method that combines the advantages of these two concepts and achieves
high-quality results for a variety of cases within 30 seconds.
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• A simple extension of our method to enable predicting sequences of images within
1-2 seconds per image.

We provide our pre-trained neural networks and the source code for the entirety of this
project.

Figure 4.3: Our proposed hybrid technique o�ers an intuitive workflow where the artist
takes a source material (∂) and produces the target image by applying the desired edits
to it within a 2D raster image editor of their choice (∑). Then, one or more encoder
neural networks are used to propose a set of approximate initial guesses (∏) to be used
with our neural network-augmented optimizer (π), which rapidly finds a photorealistic
shader setup that closely matches the target image (∫). The artist then finishes the
process by assigning this material to a target object and renders the final scene o�ine.

4.3 Overview

Many trained artists are adept at creating new photorealistic materials by engaging
in a direct interaction with a principled shader. This workflow includes adjusting the
parameters of this shader and waiting for a new image to be rendered that showcases
the appropriate output material. If at most a handful of materials are sought, this is a
reasonably e�cient workflow, however, it also incurs a significant amount of rendering
time and expertise in material modeling. Our goal is to empower novice and intermediate-
level users to be able to reuse their knowledge from image processing and graphic design
to create their envisioned photorealistic materials.

In this work, we set up a material test scene that contains a known lighting and geometry
setup, and a fixed principled shader with a vector input of x œ Rm where m = 19.
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4.3. Overview

This shader is able to represent the most commonly used di�use, glossy, specular and
translucent materials with varying roughness and volumetric absorption coe�cients. Each
parameter setup of this shader produces a di�erent material model when rendered. In
our workflow, the user is o�ered a variety of images, and chooses one desired material
model as a starting point. Then, the user is free to apply a variety of image processing
operations on it, e.g., colorization, image inpainting, blurring a subset of the image
and more. Since these image processing steps are not grounded in a physically-based
framework, the resulting image is not achievable by adjusting the parameters in the vast
majority of cases. However, we show that our proposed method is often able a produce a
photorealistic material that closely matches this target image.

Solution by optimization. When given an input image t œ Rp, it undergoes a series
of transformations (e.g., colorization, image inpainting) as the artist produces the target
image t̃ = �(t), where � : Rp æ Rp. Then, an image is created from an initial shader
configuration, i.e., „ : RmæRp, where m refers to the number of parameters within the
shader and p is the number of variables that describe the output image (in our case
p = 3 · 4102 is used with the range of 0-255 for each individual pixel). This operation is
typically implemented by a global illumination renderer. Our goal is to find an appropriate
parameter setup of the principled shader x œ Rm that, when rendered, reproduces t̃.
Generally, this is not possible as a typical � leads to images that cannot be perfectly
matched through photorealistic rendering. However, surprisingly, we can often find a
configuration x that produces an image that closely resembles t̃ through solving the
minimization problem

argmin
x

|| „(x) ≠ t̃ ||2,

subject to xmin Æ x Æ xmax, (4.1)

where the constraints stipulate that each shader parameter has to reside within the
appropriate boundaries (i.e., 0 Æ xi Æ 1 for albedos or xj Ø 1 for indices of refraction).
To be able to benchmark a large selection of optimizers, we introduce an equivalent
alternative formulation of this problem where the constraints are reintroduced as a barrier
function �(·), i.e.,

argmin
x

1
|| „(x) ≠ t̃ ||2 + �(x)

2
, where

�(x) =
I

0, if x œ C,

+Œ, otherwise,

C =
Ó

x | fi(x) Ø 0, i = 1, 2
Ô

,

f1(x) = xmax ≠ x,

f2(x) = x ≠ xmin. (4.2)

where C denotes the feasible region chosen by a set of constraints described by fi(·)
(equivalent to the second line in (4.1)) and the vector comparison operator (Ø) here
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is considered true only when all of the vector elements exceed (or equal to) zero. In a
practical implementation, the infinity can be substituted by a su�ciently large integer.
This formulation enabled us to compare several optimizers (Table 4.3), where we found
Nelder and Mead’s simplex-based self-adapting optimizer [NM65] to be the overall best
choice due to its ability to avoid many poor local minima through its contraction operator
and used that for each of the reported results throughout this manuscript.

Figure 4.4: Whenever the target image strays too far away from the images contained
within their training set (lower right), our 9 inversion networks typically fail to provide
an adequate solution and potentially predict results outside the feasible region (∑, Ω,
æ). However, using our “best of n” scheme and our hybrid method, the best performing
prediction of our neural networks can be used to equip our optimizer with an initial
guess, substantially improving its results.

Nonetheless, solving this optimization step still takes several hours as each function
evaluation invokes „, i.e., a rendering step to produce an image, which clearly takes too
long for day-to-day use in the industry. We introduce two solutions to remedy this
limitation, followed by a hybrid method that combines their advantages.

Neural renderer. To speed up the function evaluation process, we replace the
global illumination engine that implements „ with a neural renderer [ZFWW18]. This
way, instead of running a photorealistic rendering program at each step, our optimizer
invokes the neural network to predict this image, thus reducing the execution time of
the process by several orders of magnitude, in our case, from an average of 50 seconds
to 4ms per image at the cost of restricting the material editing to a prescribed scene
and lighting setup. Because of the lack of a useful initial guess, this solution still
requires many function evaluations and is unable to reliably provide satisfactory solutions.
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Solution by inversion. One of our key observations is that an approximate
solution can also be produced without an optimization step by finding an appropriate
inverse to „: since „ is realized through a decoder neural network (i.e., neural renderer)
that produces an image from a shader configuration, „≠1, its inverse, can be implemented
as an encoder network that takes an image as an input and predicts the appropriate
shader parameter setup that generates this image. This adjoint problem has several
advantages: first, such a neural network can be trained on the same dataset as „ by only
swapping the inputs and outputs and retains the advantageous properties of this dataset,
e.g., arbitrarily many new training samples can be generated via rendering, thereby
loosening the ever-present requirement of preventing overfitting via regularization
[SHK+14, NH92, ZH05]. Second, we can use it to find a solution directly through
x ¥ „≠1(t̃) without performing the optimization step described in (4.1-4.2). As the
output image is not produced through a lengthy optimization step, but is inferred by
this encoder network, this computes in a few milliseconds. We will refer to this solution
as the inversion network and note that our implementation of „≠1 only approximately
admits the mathematical properties of a true inverse function. We also discuss the
nature of the di�erences in more detail in Section 5.11. We have trained 9 di�erent
inversion network architectures and found that typically, each of them performs well on
a disjoint set of inputs. Our other key observation is that because we have an atypical
problem where the ground truth image (t̃) is available and each of the candidate images
can be inferred inexpensively (typically within 5 milliseconds), it is possible to compute
a “best of n” solution by comparing all of these predictions to the ground truth, i.e.,

x = „≠1
(i) (t̃), where i = argmin

j
||„(„≠1

(j)(t̃)) ≠ t̃ ||2, (4.3)

where „≠1
(i) denotes the prediction of the i-th inversion network, j = (1, . . . , n), and in

our case, n=9 was used. This step introduces a negligible execution time increase and
in return, drastically improves the quality of this inversion process for a variety of test
cases. However, these solutions are only approximate in cases where the target image
strays too far away from the training data (Fig. 4.4). In Section 4.3.1 we report the
structure of the neural networks used in this figure. We note that the training set for the
neural renderer is equivalent to the one used in Gaussian Material Synthesis (Chapter
3), while our inversion networks are formulated as the adjoint of this neural renderer,
and hence, one of their key advantage is that they can be trained on the same dataset
by swapping the inputs and outputs and applying the appropriate architectural changes
discussed in the manuscript.

Hybrid solution. Both of our previous solutions su�er from drawbacks: the optimization
approach provides results that resemble t̃ but is impracticable due to the fact that it
requires too many function evaluations and gets stuck in local minima, whereas the
inversion networks rapidly produce a solution, but o�er no guarantees when the target
image significantly di�ers from the ones shown in the training set. We propose a hybrid
solution based on the knowledge that even though the inverse approach does not provide
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a perfect solution, since it can produce results instantaneously that are significantly
closer to the optimum than a random input, it can be used to endow the optimizer
with a reasonable initial guess. This method is introduced as a variant of (4.2) where
xinit = „≠1(t̃) and a more detailed description of this hybrid solution is given below in
Algorithm 4. Additionally, this technique is able to not only provide a “headstart” over
the standard optimization approach but was also able to find higher quality solutions in
all of our test cases.

As the first stage executes within a few milliseconds, it can be used as-is for real-
time applications where an approximate solution is tolerable. In production rendering
environments, where the artist can typically a�ord to wait 20 seconds for a more accurate
solution, we recommend using both stages. Furthermore, since both the input and the
output images are both available for the algorithm, the RMSE between the two can be
compared. With a carefully chosen error threshold, this would result in a “best of both
worlds” solution that only takes 20 seconds when necessary, and would execute in close
to real time otherwise.

Algorithm 4 Photorealistic material editing
1: Given t, „(·),

#
„≠1

(1)(·), . . . , „≠1
(n)(·)

$
, xmin, xmax

2: t̃ Ω �(t) Û Obtain target image
3: for i Ω 1 to n do Û Predict with n inversion networks
4: Compute each „≠1

(i) (t̃)

5: Find i = argminjœ1..n ||„(„≠1
(j)(t̃)) ≠ t̃ ||2 Û Find best candidate

6: Define xinit Ω „≠1
(i) (t̃)

7: Define f1(x) = xmax ≠ x Û Set up constraints
8: Define f2(x) = x ≠ xmin
9: Define C =

)
x | fi(x) Ø 0, i = 1, 2

*
Û Construct feasible region

10: Define �(x) =
I

0, if x œ C,

+Œ, otherwise
Û Construct barrier

11: Initialize optimizer with xinit
12: Minimize argminx

!
||„(x) ≠ t̃||2 + �(x)

"
Û Refine initial guess

13: Display „(x) to user

Predicting image sequences. A typical image editing workflow takes place within
a raster graphics editor program where the artist endeavors to find an optimal set of
parameters, e.g., the kernel width ‡ in the case of a Gaussian blur operation to obtain
their envisioned artistic e�ect. This process includes a non-trivial amount of trial and
error where the artist decides whether the parameters should be increased or decreased;
this is only possible in the presence of near-instant visual feedback that reflects the
e�ect of the parameter changes on the image. We propose a simple extension to our
hybrid method to accommodate these workflows: consider an example scenario where
the k-th target image in a series of target images t̃(k) are produced by subjecting a

58



4.3. Overview

starting image t to an increasingly wide blurring kernel. This operation is denoted by
�‡(t) = G‡ ú t, where G‡ is a zero-centered Gaussian, and for simplicity, the target
images are produced via t̃(k) = �k(t), with the initial condition of t̃(0) =t. We note that
many other transforms can also be substituted in the place of � without loss of generality.
We observe that such workflows create a series of images where each neighboring image
pair shows only minute di�erences, i.e., for any positive non-zero k, ||t̃(k+1) ≠ t̃(k)||2
remains small. As in these cases, we are required to propose many output images, we can
take advantage of this favorable mathematical property by extending the pool of initial
inversion networks with the optimized result of the previous frame by modifying Steps
3-5 of Algorithm 4 to add

„≠1
(n+1)(t̃k) = argmin

x

1
||„(x) ≠ t̃k≠1||2 + �(x)

2
. (4.4)

Note that this does not require any extra computation as the result of Step 12 of the
previous run can be stored and reused. Intuitively, this means that both the inversion
network predictions and the prediction of the previous image are used as candidates for
the optimization (whichever is better). This way, after the optimization step is finished,
the improvements can be “carried over” to the next frame. This method we refer to as
reinitialization and in Section 5.11, we show that it consistently improves the quality of
our output images for such image sequences, even with a strict budget of 1-2 seconds per
image.

4.3.1 Neural network architectures

Below, we describe the neural network architectures we used to implement each individual
„≠1

(i) shown in Fig. 4.4. The Conv2D notation represents a 2D convolutional layer with
the appropriate number of filters, spatial kernel sizes and strides, where FC represents a
dense, fully-connected layer with a prescribed number of neurons and dropout probability.

1. 2x{Conv2D(32,3,1), MaxPool(2,2)} –
1x{Conv2D(64,3,1), MaxPool(2,2)} –
2x{Conv2D(128,3,1), MaxPool(2,2)} –
2x{FC(1000, 0.1)} - FC(m, 0.0)

2. 2x{Conv2D(32,3,1), MaxPool(2,2)} –
2x{FC(1000, 0.1)} - FC(m, 0.0)

3. 2x{Conv2D(32,3,1), MaxPool(2,2)} –
2x{FC(1000, 0.5)} - FC(m, 0.0)

4. 2x{Conv2D(32,3,1), MaxPool(2,2)} –
1x{Conv2D(64,3,1), MaxPool(2,2)} –
2x{Conv2D(128,3,1), MaxPool(2,2)} –
2x{FC(3000, 0.5)} - FC(m, 0.0)
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4. Photorealistic Material Editing

5. 2x{Conv2D(32,3,1), MaxPool(2,2)} –
1x{Conv2D(64,3,1), MaxPool(2,2)} –
2x{Conv2D(128,3,1), MaxPool(2,2)} –
2x{FC(3000, 0.0)} - FC(m, 0.0)

6. 2x{Conv2D(32,3,1), MaxPool(2,2)} –
2x{FC(1000, 0.0)} - FC(m, 0.0)

7. 2x{Conv2D(32,3,1), MaxPool(2,2)} –
2x{FC(1000, 0.0)} - FC(m, 0.0)

8. 2x{Conv2D(32,3,1), MaxPool(2,2)} –
2x{FC(100, 0.0)} - FC(m, 0.0)

9. 2x{Conv2D(32,3,1), MaxPool(2,2)} –
2x{FC(1000, 0.0)} - FC(m, 0.0)

Neural networks 6,7 and 9 are isomorphic and were run for a di�erent number of epochs
to test the e�ect of overfitting later in the training process, and therefore o�er di�ering
validation losses. The implementation of „ is equivalent to the one used in Zsolnai-Fehér
et al.’s work [ZFWW18].

Initial guess 50 fun. evals 300 fun. evals 1500 fun. evals
Input Random NN Optimizer Ours Optimizer Ours Optimizer Ours

Fig. 4.5, Row 1 41.93 5.94 33.81 4.53 9.42 2.84 5.62 2.37
Fig. 4.5, Row 2 78.45 32.72 68.55 32.67 40.24 32.67 40.21 32.67
Fig. 4.5, Row 4 35.37 18.68 30.88 16.53 17.29 14.71 16.98 14.68
Fig. 4.5, Row 7 41.65 22.42 38.10 22.38 26.30 22.38 26.24 22.38
Fig. 4.5, Row 8 29.04 19.82 26.79 18.43 22.93 15.37 22.93 15.37
Fig. 4.8, Row 2 23.78 12.79 20.31 11.62 8.27 7.81 8.26 7.80
Fig. 4.8, Row 3 21.60 9.09 16.54 8.28 6.24 5.80 6.19 5.80
Fig. 4.8, Row 8 29.58 9.74 22.69 7.92 6.63 5.36 6.63 5.36

Table 4.1: A comparison of the optimization approach (with random initialization) and
our hybrid method (with “best of 9” NN initialization) on a variety of challenging global
and local image editing operations in Fig. 4.5 and 4.8. The numbers indicate the RMSE of
the outputs, and for reference, the first row showcases an input image that is reproducible
by the shader.

4.4 Results

In this section, we discuss the properties of our inverse problem formulation (i.e., inferring
a shader setup that produces a prescribed input image), followed by both a quantitative
and qualitative evaluation of our proposed hybrid method against the optimization and
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4.4. Results

Image ID in sequence (i.e., k of t̃(k))

F. evals Technique 0 10 20 30 40 50 60 70 80 90 100 110 120 �

100 No reinitialization 1.93 1.67 2.19 2.90 3.82 4.79 5.73 6.81 7.93 9.14 10.43 11.55 12.99 81.88
Reinitialization 1.93 1.34 1.88 2.54 3.34 4.30 5.30 6.38 7.50 8.69 9.93 11.55 12.99 77.67

300 No reinitialization 1.64 1.47 2.07 2.80 3.70 4.62 5.70 6.75 7.86 9.00 10.21 11.41 12.82 80.05
Reinitialization 1.64 1.30 1.80 2.42 3.25 4.25 5.25 6.33 7.45 8.64 9.88 11.41 12.82 76.44

600 No reinitialization 1.57 1.44 2.06 2.77 3.66 4.60 5.69 6.74 7.83 8.96 10.12 11.41 12.80 79.65
Reinitialization 1.57 1.29 1.80 2.49 3.33 4.20 5.18 6.27 7.38 8.58 9.81 11.41 12.80 76.11

Table 4.2: Our proposed reinitialization technique consistently outperforms per-frame
computation for the image sequence shown in Fig. 4.6. The numbers indicate the RMSE
of the outputs.

inversion network solutions. We also show that our system supports a wide variety of
image editing operations and can rapidly predict image sequences. To ensure clarity, we
briefly revisit the three introduced methods:

• The optimization approach relies on minimizing (4.2) with Nelder and Mead’s
simplex method using a random initial guess, and implementing „ through a neural
renderer,

• the inversion network refers to the “best of 9” inversion solution, i.e., x ¥ „≠1
(i) (t̃)

as shown in (4.3),

• our hybrid method is obtained by combining the two above approaches as
described in Algorithm 4.

At the end of this section, we also compare the total time taken to synthesize 1, 10, and
100 selected materials against Gaussian Material Synthesis (Chapter 3).

Inversion accuracy. Our inversion technique leads to an approximate solution within
a few milliseconds, however, because the structure of the forward and inverse networks
di�er, the inversion operation remains imperfect, especially when presented with a target
image that includes materials that are only approximately achievable. To demonstrate
this e�ect, we have trained 9 di�erent inversion networks to implement „≠1 and show
that none of the proposed solutions are satisfactory as a final output for the global
colorization case (Fig. 4.4). Our goal with this experiment was to demonstrate that a
solution containing only one inversion network generally produces unsatisfactory outputs,
regardless of network structure. However, these predictions can be used to equip our
optimizer with an initial guess, substantially improving its results. As each neural network
consumes between 300MB and 1GB of video memory, we were able to keep all of them
loaded during the entirety of the work session.

Optimizer and hybrid solution accuracy. In Table 4.1, we compared our hybrid
solution against the “best of 9” inversion network and optimization approaches and
recorded the RMS error after 50, 300 and 1500 function evaluations (these roughly
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translate to 1, 6, and 30-second execution times) to showcase the early and late-stage
performance of these methods. The table contains a selection of scenarios that we consider
to be the most challenging and note that the outputs showed no meaningful change after
1500 function evaluations. Our hybrid method produced the lowest errors in each of
our test cases, and surprisingly, the inversion network initialization not only provides a
“headstart” for our method, but also improves the final quality of the output, thereby
helping the optimizer to avoid local minima. To validate the viability of our solutions,
we also ran a global minimizer [WD97] with several di�erent parameter choices and a
generous allowance of 30 minutes of computation time for each; our hybrid method was
often able to match (and in some cases, surpass) the quality o�ered by this solution
(Table 4.3), further reinforcing how our inversion network initialization step helps avoid
getting stuck in poor local minima. Note that the optimizer was unable to meaningfully
improve the best prediction of the 9 inversion networks in Fig. 4.5, Row 7 – in this case,
a better solution can be found by using the prediction of only the first neural network
and passing it to the optimizer, improving the reported RMSE from 22.38 to 19.39 by
using 300 function evaluations.

Supported image editing operations. A typical workflow using our technique in-
cludes the artist choosing a source material and applying an appropriate image editing
operation (�) instead of engaging in a direct interaction with the principled shader.
We cluster the set of possible transforms into global (Fig. 4.5) and local (Fig. 4.8)
operations: these cases include saturation increase, grayscale transform, colorization,
image mixing, stitching and inpainting, and selective blurring of highlights. Both the
optimizer and our hybrid method were run for 1500 function evaluations to obtain the
results showcased in these two figures. As these transformations come from a 2D raster
editor and are not grounded in a physically-based framework, a perfect match is often
not possible, however, in each of these cases, our hybrid method proposed a solution
of equivalent or better quality compared to the “best of 9” inversion network and the
optimizer solutions. Throughout this work, for each comparison, the RMSE is reported,
which is widely regarded as the standard way of measuring di�erences in BRDF modeling
[MPBM03, DJ18]. There are specialized cases, e.g., noise and blurring among other
examples, that require non-standard image-quality metrics [ZM09, LWC+13] – regardless,
we have tried measuring the PSNR and produced per-channel greyscale images to record
the SSIM [WBS+04] and have not found meaningful di�erences to RMSE in our test
cases.

Image sequence prediction. As our earlier results in Table 4.1 revealed that the
global colorization techniques typically prove to be among the more di�cult cases, we
have created a challenging image sequence with an input image that is achievable with
our shader, and subjected it to a slight black level increase over many frames (Fig.
4.6). Every image within this sequence is reproduced both with independent per-frame
inference and our reinitialization technique with a strict time budget of 2, 6, and 12
seconds per image (100, 300, and 600 function evaluations). In Table 4.2, we show that
this simple extension successfully exploits the advantageous mathematical properties
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of these workflows and consistently reduces the output error for the majority of the
sequence, i.e., images 1-100. We also report the RMSE of images 101-120 for reference,
which we refer to as the “converged” regime in which the target images stray further
and further away from the feasible domain, and the proposed solution remains the same
despite these changes. Even in these cases, our reinitialization technique performs no
worse than the “no reinitialization” method, and because of its negligible additional cost,
we consider it to be a strictly better solution.

Modeling and execution time. In Fig. 4.7, we have recorded the modeling times for
1, 10, and a 100 similar materials using our method and compared them against Gaussian
Material Synthesis (GMS, Chapter 3), a learning-based technique for mass-scale material
synthesis. We briefly describe the most important parameters of the recorded execution
times and refer the interested reader to this paper for more details – the novice and
expert user timings were taken from the GMS paper and indicate the amount of time
these users took to create the prescribed number of materials by hand using Disney’s
“principled” shader [BS12], whereas GMS and our timings contain both the modeling (i.e.,
scoring a material gallery in GMS and performing image processing for our technique)
and execution times. If only one material is desired, our technique outperforms this
previous work and nearly matches the e�ciency of an expert user. When 10 materials
are sought (1 base material and 9 variants), our proposed method was adapted to use
the re-initialization technique and o�ers the best modeling times, outperforming both
GMS and expert users. In the case of mass-scale material synthesis, i.e., 100 or more
materials, both methods outperform experts, where GMS o�ers the best scaling solution.
In each case, the timings for our technique include the fixed cost of loading the 9 neural
networks (5.5s). Throughout this manuscript, all results were generated using a NVIDIA
TITAN RTX GPU.

Comparison of optimizers. In Table 4.3, we have benchmarked several optimizers,
i.e., L-BFGS-B [BLNZ95], SLSQP [Kra94], the Conjugate Gradient method [HS52] and
found Nelder and Mead’s simplex-based self-adapting optimizer [NM65] to be the overall
best choice for our global and local image-editing operations. For reference, we also ran
Basin-hopping [WD97], a global minimizer with a variety of parameter choices and a
generous allowance of 30 minutes of execution time for each test case. This method is
useful for challenging non-linear optimization problems with high-dimensional search
spaces. Note that when being run for long enough, this technique is less sensitive to
initialization due to the fact that it performs many quick runs from di�erent starting
points, and hence, we report one result for both initialization techniques. The cells in the
intersection of “Nelder-Mead” and “NN” denote our proposed hybrid method, which was
often able to match, and in some cases, outperform this global minimization technique.

4.5 Limitations and Future Work

As demonstrated in Fig. 4.4, the results of „≠1 depend greatly on the performance of
the encoder and decoder neural networks. As these methods enjoy significant research
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Input Init. type Init. RMSE Nelder-Mead L-BFGS-B SLSQP CG Basin-hopping

Fig. 4.5, Row 1 Rand 41.93 5.62 20.47 17.96 5.24 2.01Fig. 4.5, Row 1 NN 5.94 2.37 5.84 5.94 5.94
Fig. 4.5, Row 2 Rand 78.45 40.21 78.45 78.45 78.45 32.67Fig. 4.5, Row 2 NN 32.72 32.67 32.72 32.72 32.72
Fig. 4.5, Row 4 Rand 35.37 16.98 28.84 35.37 34.99 14.72Fig. 4.5, Row 4 NN 18.68 14.68 15.33 18.18 15.90
Fig. 4.5, Row 7 Rand 41.65 26.24 41.65 41.65 41.65 22.38Fig. 4.5, Row 7 NN 22.42 22.38 22.42 22.42 22.42
Fig. 4.5, Row 8 Rand 29.04 22.93 29.04 26.71 28.21 15.69Fig. 4.5, Row 8 NN 19.82 15.37 19.82 28.87 19.82
Fig. 4.8, Row 2 Rand 23.78 8.26 23.78 23.78 21.75 7.63Fig. 4.8, Row 2 NN 12.79 7.80 12.79 12.79 12.79
Fig. 4.8, Row 3 Rand 21.60 6.19 21.60 21.60 20.83 5.86Fig. 4.8, Row 3 NN 9.09 5.80 9.09 9.09 9.09
Fig. 4.8, Row 8 Rand 29.58 6.63 29.58 29.58 29.58 5.07Fig. 4.8, Row 8 NN 9.74 5.36 9.61 9.61 9.68

Table 4.3: A comparison of a set of classical optimization techniques revealed that
when using Nelder and Mead’s simplex-based optimizer with our “best of 9” inversion
network initialization, we can often match, and in some cases, outperform the results of
Basin-hopping, a global minimizer. In the interest of readability, we have marked the
cases where the optimizers were unable to improve upon the initial guess with red. For
reference, the first two rows showcase an input image that is reproducible by the shader.

attention, we encourage further experiments in including these advances to improve
them (e.g., architecture search [RMS+17], capsule networks [SFH17, HSF18] and skip
connections [MSY16] among many other notable works) and adapting other neural
network architectures to our problem that are more tailored to solve inverse problems
[AKW+18, MEM19]. Furthermore, strongly localized edits, e.g., blurring a small part of
a specular highlight typically introduces drastic changes within only a small subset of the
image and represent only a small fraction of the RMSE calculations and thus may not
get proper prioritization from the optimizer. To alleviate this, the relative importance
of di�erent regions may also be controlled via weighted masks to emphasize these edits,
making these edited regions “score higher” in the error metric, o�ering the user more
granular artistic control. In specialized cases, our reinitialization technique may prove to
be useful for single images by using the parameter set used to produce t as an initial
guess for t̃.

We also note that our learning technique assumes an input shader of dimensionality m
and a renderer that is able to produce images of the materials that it encodes. In this
work, our principled shader was meant to demonstrate the utility of this approach by
showcasing intuitive workflows with the most commonly used BSDFs. However, this
method needs not to be restricted to a classic principled BSDF, and is also expected to
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perform well on a rich selection of more specialized material models including thin-film
interference [Dia91, IWR+15], fluorescence [WTP01] birefringence [WW08], microfacet
models [HHdD16] layered materials [Bel18, ZJ18], and more.

4.6 Conclusions

We have presented a hybrid technique to empower novice users and artists without
expertise in photorealistic rendering to create sophisticated material models by applying
image editing operations to a source image. The resulting images are typically not
achievable through photorealistic rendering, however, in many cases, solutions be found
that are close to the desired output. Our learning-based technique is able to take such an
edited image and propose a photorealistic material setup that produces a similar output,
and provides high-quality results even in the presence of poorly-edited images. Our
proposed method produces a reasonable initial guess and uses a neural network-augmented
optimizer to fine-tune the parameters until the target image is matched as closely as
possible. This hybrid method is simple, robust, and its computation time is within 30
seconds for every test case showcased throughout this work. This low computation time
is beneficial especially in the early phases of the material design process, where a rapid
iteration over a variety of competing ideas is an important requirement (Fig 4.9). Our
two key insights can be summarized as follows:

• Normally, using an input image that was generated by a principled shader is not
useful given that the user has to generate this image themselves with a known
parameter setup. However, our main idea is that the user can subject this image to
raster editing operations and “pretend” that this input is achievable, and reliably
infer a shader setup to mimic it.

• Our neural networks can be combined with optimizers both directly, i.e., by using
an optimizer that invokes a neural renderer at every function evaluation step to
speed up the convergence and indirectly by using a set of neural networks network
to endow the optimizer with a reasonable initial guess (steps ∏ and π in Fig. 4.3).
This combination results in a two-stage sytem that opens up e�cient material
editing workflows for artists without expertise in this area.

Furthermore, we proposed a simple extension to support predicting image sequences with
a strict time budget of 1-2 seconds and believe this method will o�er an appealing entry
point for novices into world of photorealistic material modeling.

For users that seek more than a handful materials and wish to engage in rapid variant
generation, we recommend using Gaussian Material Synthesis, while we designed this
work, i.e., Photorealistic Material Editing Through Direct Image Manipulation
for artists who seek only a few materials and wish to leverage their knowledge in 2D
raster image editing to save more time. We would like to thank Reynante Martinez for
providing us the geometry and some of the materials for the Paradigm (Fig. 4.1) and
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Genesis scenes (Fig. 4.2), ianofshields for the Liquify scene that served as a basis for Fig.
4.9, Robin Marin for the material test scene, Andrew Price and Gábor Mészáros for their
help with geometry modeling, Felícia Zsolnai-Fehér for her help improving our figures,
Christian Freude, David Ha, Philipp Erler and Adam Celarek for their useful comments.
We also thank NVIDIA for providing the GPU used to train our neural networks. This
work was partially funded by Austrian Science Fund (FWF), project number P27974.
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Figure 4.5: Results for three techniques on common global colorization operations
including saturation increase and grayscale transform. The “reference material” labels
showcase materials that can be obtained using our shader and are used as source images
for the materials below them, where the arrows denote the evolution of the target image.
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Figure 4.6: Our image sequence starts with an input that is achievable using our shader
(upper left), where each animation frame slightly increases its black levels. The lower
right region showcases the 300th frame of the animation.

Figure 4.7: The recorded modeling times reveal that if at most a handful (i.e., 1-10) of
target materials are sought, our technique o�ers a favorable entry point for novice users
into the world of photorealistic material synthesis.
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Figure 4.8: Results for three techniques on local image editing operations and image
mixing. The “reference material” labels showcase materials that can be obtained using
our shader and are used as source images for the materials below them, where the arrows
denote the evolution of the target image.
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Figure 4.9: Our technique is especially helpful early in the material design process where
the user seeks to rapidly iterate over a variety of possible artistic e�ects. Both material
types were synthesized using our described method. We demonstrate this workflow in
our supplementary video.
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CHAPTER 5
Modeling Real-Time Subsurface

Scattering

Figure 5.1: Real-time results of our method for simulating translucent materials (skin on
the left, ketchup on the right). Our separable subsurface-scattering method enables the
generation of these images using only two convolutions (versus 12 in the sum-of-Gaussians
approach [dLE07, JSG09]) and seven samples per pixel, while featuring quality comparable
with the current state of the art, at a fraction of its cost. It can be implemented as a
post-processing step and takes only 0.489 ms per frame on an AMD Radeon HD 7970 at
1080p, which makes it highly suitable for challenging real-time scenarios.

5.1 Motivation

So far, we have shown two works on material synthesis and editing, but haven’t addressed
the issue of rendering subsurface light transport. In 1.3.6, we discussed why rendering
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one accurate image of a translucent material often takes from minutes to hours. To
address this problem, in this work, we propose two real-time models for simulating
subsurface scattering for a large variety of translucent materials, which need under 0.5
milliseconds per frame to execute. This makes them a practical option for real-time
production scenarios1. Current state-of-the-art, real-time approaches simulate subsurface
light transport by approximating the radially symmetric non-separable di�usion kernel
with a sum of separable Gaussians, which requires multiple (up to twelve) 1D convolutions.
In this work we relax the requirement of radial symmetry to approximate a 2D di�use
reflectance profile by a single separable kernel.

We first show that low-rank approximations based on matrix factorization outperform
previous approaches, but they still need several passes to get good results. To solve this,
we present two di�erent separable models: the first one yields a high-quality di�usion
simulation, while the second one o�ers an attractive trade-o� between physical accuracy
and artistic control. Both allow rendering subsurface scattering using only two 1D
convolutions, reducing both execution time and memory consumption, while delivering
results comparable to techniques with higher cost. Using our importance-sampling
and jittering strategies, only seven samples per pixel are required. Our methods can
be implemented as simple post-processing steps without intrusive changes to existing
rendering pipelines.

5.2 Introduction

The accurate depiction of translucent materials is an important but challenging topic in
the motion picture and video game industries. Rendering realistic subsurface scattering
(SSS) implies simulating how light travels and scatters inside translucent media, which is
an expensive process. While o�ine rendering scenarios can a�ord longer computation
times, real-time applications, such as video games, impose severe time constraints, often
leading to the exclusion of subsurface scattering and translucency e�ects. This in turn
hinders the level of realism that can be achieved.

One of the most common approaches to compute subsurface scattering e�ciently exploits
the fact that it blurs high-frequency details and illumination. This means that simulating
subsurface scattering can be approximated as a convolution with a di�usion kernel that
mimics the di�use reflectance profile for a given translucent medium. While the exact
reconstruction normally requires an expensive two-dimensional convolution, d’Eon et
al. [dLE07] showed that it can be approximated by a sum of radially symmetric Gaussians.
Thus, due to the separability of Gaussians, the 2D convolution can be computed using
a set of cheaper 1D passes, which allows high-quality skin rendering in real time. This
approach was later extended to screen space, modulating the width of the kernel according
to per-pixel depth information [JSG09].

1
This chapter is based on our equivalently named paper [JJG15].
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Figure 5.2: Decay of the singular values in the singular value decomposition of a di�use
reflectance profile used to simulate subsurface scattering in skin. Only the components
associated to the first few singular values contribute appreciably to the reconstruction of
the profile, making a low-rank approximation feasible.

However, in order to get adequate results, several Gaussians are needed to model the
di�use reflectance profile. This translates into multiple 1D convolutions per frame, which
is still costly. In this work, we make the key observation that exact simulated di�usion
kernels, which are in general mathematically non-separable, can be closely reconstructed
by a low-rank factorization for a wide range of materials (see Figure 5.2). Based on this,
we present two di�erent separable models that allow simulating subsurface scattering
with just two 1D convolutions: The first one allows reconstructing a high-quality di�usion
profile based on the observation that the irradiance is close to be additively separable,
while the second is an artist-friendly model that, following the previous observation,
provides an attractive trade-o� between physical accuracy and ease of use for artistic
editing of the scattering profiles (Table 5.1). Coupled with our importance-sampling and
jittering strategies, our methods only require seven samples per pixel (see Figures 5.1
and 5.43).

Our methods can be implemented as simple post-processing steps and do not rely on
complex alpha-blending pipelines or Gaussian levels of detail [JG10], and work with
dynamic objects without any additional cost. Moreover, all our rank-1 approximations
execute in less then 0.5 ms per frame on modern commodity hardware and exhibit
negligible fixed costs, as regions of the scene with no visible scattering can be quickly
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Model Visual quality 1D convolutions Separable

1 Gaussian low 2 3
2+ Gaussians high 2 per Gaussian 7

Kernel pre-integration high 2 3
Artist-friendly model controllable 2 3

Table 5.1: Compared to the state of the art [dLE07, JSG09] (above the separation line),
our proposed techniques (below) o�er solutions for a variety of trade-o� choices. Our
techniques are able to provide high-quality results by using a separable approximation of
only two 1D convolutions.

culled using stencil bu�ering. Our separable approximation of subsurface scattering
fills the gap between physically based subsurface-scattering rendering and highly time-
constrained environments such as games, and it is currently being used in game engines
and production pipelines. We additionally provide the source code for the entirety of
this project.

5.3 Separable Subsurface Scattering

The di�use reflectance of a homogeneous translucent material due to subsurface light
scattering is characterized by its 2D di�use reflectance profile Rd(x, y), which describes
the light reflected around a normally incident pencil beam on the origin of a surface of an
infinite half-space [JMLH01]. For a homogeneous material, Rd is radially symmetric, and
can be characterized by a 1D di�usion profile Rd(r) such that Rd(x, y) = Rd(Î(x, y)Î)2.
It can be used to calculate the radiant exitance Me(x, y) at an arbitrary surface point
(x, y) according to:

Me(x, y) =
⁄

R2
E(xÕ, yÕ) Rd(x ≠ xÕ, y ≠ yÕ) dxÕdyÕ, (5.1)

where E(x, y) is the irradiance at point (x, y), and both Me(x, y) and E(x, y) are measured
in Wm≠2. Note that Equation (5.1) has the form of a 2D convolution with the 2D
reflectance profile: Me(x, y) = (E ú Rd)(x, y).

Approximation of 2D di�usion profiles. For real-time applications, carrying out
the 2D convolution in Equation (5.1) is prohibitively expensive. However, if we can
express the profile Rd as an approximation A consisting of a sum of separable functions,
it is possible to approximate this operation by a sequence of 2N 1D convolutions, which

2
Note that the radial symmetry of the di�usion assumption follows from assuming a normally incident

incoming light, which in general does not hold in real applications. For a description of SSS with

directional-dependent di�usion we refer the reader to e.g. [DLR
+

09, HCJ13, FHK15].
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5.3. Separable Subsurface Scattering

Figure 5.3: Overview of our approach: based on the low-rank nature of the di�usion
kernel Rd(x, y), shown by the � matrix below storing the singular values of the kernel
(magnitude in grayscale), we approximate Rd(x, y) with A(x, y) = a1(x)a1(y). This
simplifies the simulation of subsurface scattering (right) to just two 1D convolutions per
summand with the irradiance signal.

exhibit significantly smaller computational complexity:

(E ú Rd)(x, y) ¥ (E ú A)(x, y) =
Nÿ

i=1
((E ú ai) ú ai)(x, y)

with A(x, y) =
Nÿ

i=1
ai(x)ai(y), (5.2)

where the approximation A is defined by 1D functions ai. From the radial symmetry
of Rd it follows that the same functions ai can be employed in both coordinate directions.
d’Eon et al. [dLE07] observed that zero-mean Gaussians G are suitable functions for
approximation:

Rd(x, y) ¥ Ag(x, y) =
Nÿ

i=1
wiG(x, y; ‡i), (5.3)

where ‡i denote the standard deviation of the respective Gaussians. Due to the separability
of the Gaussian kernel, the convolution with Ag can be realized as 2N 1D convolutions.
Unfortunately, for the most demanding real-time scenarios these 2N convolutions are
still too expensive.

In practice, however, we only work with discretized di�usion kernels, which can be
interpreted and analyzed as 2D matrices. This allows us to make the observation that
most of the energy of typical di�usion kernels is stored in the first few singular values, and
in particular in the first one (see Figure 5.2). This means that the di�usion profile can
be approximated with a low-rank separable approximation, and that a single separable
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5. Modeling Real-Time Subsurface Scattering

kernel can reproduce most of the kernel perceptual qualities, if chosen appropriately. The
application of such a separable kernel for rendering is illustrated in Figure 5.3.

An obvious choice for a discretized separable kernel would be using just the first component
of the singular value decomposition (SVD), which – according to the Eckhart-Young
theorem [EY36] – gives the best low-rank approximation with respect to the Frobenius
norm. Unfortunately, the rank-1 approximation of the kernel using SVD exhibits a
rather large energy loss and produces unsatisfactory results even if energy conservation
is enforced by normalizing the kernel. This is due to the fact that a pure kernel-space
factorization does not take into account that in image-space, some parts of the kernel
are more relevant than others. Higher-rank SVD-based approximations (i.e., N ¥ 2 ≠ 6)
converge very rapidly to the original kernel (Figure 5.4), but the increased computation
times make it a less attractive option for real-time applications. In the following we show
that, under certain assumptions, even a rank-1 approximation can be used to reconstruct
the di�usion kernel with high accuracy (Section 5.4), and then propose an artist-friendly
separable model that allows intuitive editing of the appearance of translucent materials
(Section 5.5).

5.4 Pre-integrated Separable Kernel

Both the sum-of-Gaussians approximation and our SVD-based method produce unsatisfac-
tory results for a single summand, i.e. N = 1. Due to the non-separability of discretized
representations of realistic di�usion profiles, it is not possible to fully reconstruct the
e�ect of their convolution with 2D signals by a single separable kernel. Additionally,
separable approximation kernels are in general not radially symmetric, as illustrated by

Figure 5.4: Results of rank-N approximations obtained using the SVD of the discrete
di�usion profile for skin, for N = {1, 3, 6}. Using the SVD’s rank-1 (separable) approxi-
mation leads to poor results, since most of the kernel’s energy is stored in the center of the
kernel. Increasing the rank of the approximation leads to a more faithful approximation
of the di�usion kernel, but at the cost of introducing several passes, which makes it
ine�cient for time-constrained applications. We refer the reader to Section 5.7 for more
results using the SVD low-rank approximation.
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5.4. Pre-integrated Separable Kernel
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Figure 5.5: Plot of our pre-integrated kernel compared to the ground truth for human
skin, in both the axial and diagonal directions; it can be seen that due to the loss of
radial symmetry, our kernel gives di�erent results for the axial and diagonal directions,
as opposed to the ground-truth kernel. Note that our method does not try to mimic the
kernel to be close to the 2D di�usion kernel, but it tries to match the final result of the
convolution (Figure 5.6 and 5.7). Additional comparisons can be found in the Section
5.7.

an example in Figure 5.5. It is, however, possible to completely reproduce a profile’s
behavior on a special class of signals: assuming that the irradiance is additively separable,
i.e., E(x, y) = E1(x) + E2(y) or, equivalently, ˆE

ˆxˆy = ˆE
ˆyˆx = 0, the radiant exitance Me

is given as follows (refer to Section 5.7. for details):

Me(x, y) =
⁄⁄

E(xÕ, yÕ) Rd(x ≠ xÕ, y ≠ yÕ) dxÕdyÕ

=
⁄

E1(xÕ)
⁄

Rd(x ≠ xÕ, y ≠ yÕ) dyÕ

¸ ˚˙ ˝
ap(x≠xÕ)

dxÕ

+
⁄

E2(yÕ)
⁄

Rd(x ≠ xÕ, y ≠ yÕ) dxÕ

¸ ˚˙ ˝
ap(y≠yÕ)

dyÕ

=
⁄⁄

E(xÕ, yÕ) 1
ÎapÎ1

ap(x ≠ xÕ)ap(y ≠ yÕ) dxÕdyÕ,

(5.4)

where ap denotes the pre-integrated 1D kernel of Rd along a coordinate axis. Due to
the radial symmetry of Rd, we have ap(x) = ap(y), where ÎapÎ1 = ÎRdÎ1 by definition.
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5. Modeling Real-Time Subsurface Scattering

Figure 5.6: Comparison of the di�erent techniques proposed with a six-Gaussian fit
for skin [dLE07, JSG09] and the ground truth (2D kernel). Note that our separable
approximations lead to similar quality results with just two 1D convolutions, as opposed
to the twelve needed by the sum-of-Gaussians approach.

Hence, we define the pre-integrated3kernel Ap of the di�usion profile as:

Ap(x, y) = 1
ÎRdÎ1

ap(x)ap(y). (5.5)

Note that Ap reproduces the exact 2D convolution with Rd in the presence of additively
separable irradiance signals, such as straight shadow boundaries of arbitrary orientation
or general axis-aligned 1D functions (see Figure 5.7 for an example of a vertical shadow
boundary).

Even for general (i.e., non-additively separable) signals, this approximation yields good
results for a wide range of materials and scenarios (see Figure 5.6 and 5.43), since most
real-world signals E(x, y) can be locally approximated with additively separable functions.
However, this formulation o�ers limited control to an artist and needs to be discretized
to be used in practical applications; in the following section we describe a separable,
artist-friendly model that overcomes these two limitations.

5.5 An Artist-Friendly Separable Model

Our pre-integrated kernel (Section 5.4) is able to reconstruct a wide range of materials
given its di�usion kernel, which can be obtained from measured data [JMLH01, MES+11]
or from simulations. However, in a production environment these profiles might not be
the optimal ones, since they might not match the assets (e.g., color of the albedo maps)
being captured or computed for di�erent types of skins. To solve this issue, we propose
an approach suitable for artistic editing of subsurface scattering, based on physically
meaningful parameters.

3
Note that our pre-integrated formulation is fundamentally di�erent from the one proposed by Penner

and Borshukov [PB11]: while they pre-integrate the gradients in image-space due to subsurface scattering,

we pre-integrate the kernel, which is later applied to simulate SSS.
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5.5. An Artist-Friendly Separable Model

Figure 5.7: Comparison of the results for our two separable techniques applied to a
step-like irradiance: both the sum-of-Gaussians [dLE07, JSG09] and a low-rank SVD-
based decomposition need several convolutions to match the true kernel. Our proposed
pre-integrated kernel, however, is exact for axis-aligned functions, such as this example.
Our artist-friendly model provides a rich design space: This is illustrated by two approx-
imations, where for the first (close fit), perceptual similarity to the ground truth was the
modeling objective, while the second (production) was tweaked by an artist for produc-
tion purposes. The style of presentation was inspired by previous work [DI11, HCJ13].
Additional 2D visualizations of the di�erent kernels are provided in Section 5.7, where we
also demonstrate that the radial asymmetry of the SVD-based kernels vanishes rapidly
with increasing rank.

A general approximation adding separable kernels (see Equation 5.2) exhibits a vast
amount of degrees of freedom if general functions ai are used. Even a sum of N Gaussians
(see Equation 5.3) requires the manipulation of 2N parameters per wavelength by the
artist. Moreover, changing the parameters of one Gaussian in the presence of many others
may lead to unexpected results. Jimenez et al.[JJG12] proposed ad-hoc transformations
to a base profile in a separable approximation to overcome this limitation. However,
this model lacked an intuitive mapping to the underlying physics of di�usion. Instead,
inspired by previous work allowing modeling and editing of subsurface profiles with
simple low-dimensional functions [KKCF13], our approach is based on the more intuitive
concept of splitting subsurface scattering into near- and far-range scattering, encoded in
two Gaussians. These form the basis of our separable kernel am as:

am(x) = w G(x, ‡n) + (1 ≠ w) G(x, ‡f )
Am(x, y) = am(x)am(y),

(5.6)

where ‡n and ‡f represent the standard deviation of the near and far scattering Gaussians
respectively, and w is the weighting factor. Note that am represents a mixture of two 1D
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5. Modeling Real-Time Subsurface Scattering

Figure 5.8: An example of the intuitive editing capabilities of our artist-friendly model.
Left: Input irradiance map, without subsurface scattering. Middle: Adjusting the far
scattering. Right: Final result after adjusting the near scattering and the balance between
the two. Shifting more energy to near scattering allows preserving the bump details.

Gaussians G(x, ‡), which result in a separable (rank-1) kernel. This is di�erent from the
2D Gaussian mixture approach of d’Eon et al. [dLE07], where two Gaussians would not
yield a separable (rank-1) kernel, but a solution of rank two.

Our model takes the benefits of the separable approximation described in Section 5.3,
which is able to match the ground truth under di�erent light configurations (Section 5.4),
while o�ering a rich design space that allows for intuitive editing of the appearance of
translucent materials (Figures 5.8 and 5.39(d)), including easy integration in production
pipelines, where this appearance control is usually required. Our approximation features
another important property: since it is based on Gaussians, it is a continuous parametric
representation of the profile; this representation allows computing the di�usion profile
analytically at run-time, as will be shown in Section 5.10. Moreover, the following section
introduces an additional guided deviation from the actual di�usion kernel, to generate
viable rank-1 approximations that emphasize certain translucency e�ects.

5.6 Guided Optimization

In this section, we provide more details of the guided optimization and discuss the
practical e�ects of our k parameter. For a guided deviation from the di�usion kernel,
we additionally present a practical optimization framework to generate viable rank-1
approximations that emphasize the translucency e�ects of certain features. We aim to
find a separable approximation As(x, y) = as(x)as(y) to the di�usion profile Rd(x, y),
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5.7. Derivations and Details for Low-Rank Subsurface Light Transport

defined by the solution to the minimization problem:

as = argmin
a

⁄

R2
�(x, y)

!
Rd(x, y) ≠ a(x)a(y)

"2
dx dy

subject to ÎRdÎ1 = ÎaÎ2
1.

(5.7)

We optimize for minimal L2 distance while still retaining energy conservation via the
1-norm constraint (see Section 5.3). The guide function �(x, y) provides the means to
select the appropriate length scale of intended artistic e�ect, and has the form:

�(x, y; k) =
1
x2 + y2

2k/2
(1 ≠ e≠bx2)(1 ≠ e≠by2), (5.8)

where k denotes the guide parameter and b gives the suppression term of the center cross
region (we use b = 50). Varying k between 0 and 4 provides control over the perceived
sharpness of the approximation As. k ¥ 2 yields the approximation of the actual di�usion
kernel, while k = 0 provides a visually sharper variant (see Figure 5.7) and k = 4 a
smoother approximation that models the far-range scattering of the di�usion profile more
faithfully. This optimization-based approach approximates di�usion kernels while still
allowing to emphasize either near or far scattering with the help of a single parameter.
This way, the user can adapt the kernel to a given scene and its specific properties, which
is not possible by using the single, fixed solution of the pre-integration scheme.

5.7 Derivations and Details for Low-Rank Subsurface

Light Transport

In this section, we provide more details about the low-rank approximation techniques,
followed by a few important implementation details.

5.7.1 Low-rank approximations

In order to accurately approximate the di�use reflectance profile Rd(x, y) with a sum
of separable kernels A(x, y) =

qN
i=1 ai(x)ai(y), an adequate choice for the individual

1D functions ai is required. d’Eon and colleagues [dLE07] observed that zero-mean
Gaussians G are suitable for this task, i.e.,

Rd(x, y) ¥ Ag(x, y) =
Nÿ

i=1
wiG(x, y; ·i), (5.9)

where ·i denote the standard deviations of the respective Gaussians. Due to the sep-
arability of the Gaussian kernel, the convolution with Ag can be realized as 2N 1D
convolutions. During the computation of adequate wi’s and ·i’s, d’Eon et al. employed
an L1 constraint such that ÎAgÎ1 = ÎRdÎ1, which guarantees energy conservation of
the approximation Ag. Furthermore, the Gaussian kernel is spherically symmetric and
thus Ag also exhibits this feature of the original profile.
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5. Modeling Real-Time Subsurface Scattering

We found, however, that emphasizing the closeness criterion and forfeiting radial symmetry
yields approximations that produce the same visual quality with less convolutions,
i.e., with lower complexity (see Figure 5.13). Inspired by previous methods for low-
rank approximations of reflectance data [LRR04, PvBM+06, KM99], we employ matrix
factorization of the discrete 2D di�usion profile Rd œ Rm◊m. Following from the Eckhart-
Young theorem [EY36], a truncation of the singular value decomposition (SVD) of Rd

gives the best low-rank approximation with respect to the Frobenius norm. In more
detail, given the SVD of the di�usion profile:

Rd = U�V T ,

U =
1
u(1)| u(2)| . . . | u(m)

2
,

V =
1
v(1)| v(2)| . . . | v(m)

2
,

� = diag (‡1, ‡2, . . . , ‡m) ,

(5.10)

the exact solution to the approximation problem
min

A
ÎRd ≠ AÎF ,

subject to rank(A) = N,
(5.11)

is given by
As = U�N V T ,

where �N = diag (‡1, . . . , ‡N , 0, . . . , 0) .
(5.12)

The Frobenius norm follows the classical definition, i.e., ÎAÎF =
Òqm

i=1
qm

j=1 a2
ij =

Òqm
i=1 ‡2

i and corresponds to the L2 norm for continuous 2D functions. Note that �N is
a diagonal matrix and the approximation As can be written as a sum of separable kernels,
i.e., AS =

qN
i=1 u(i) ‡i v(i)T . The 1D functions ai are therefore given by ai = Ô

‡iu(i),
since due to the symmetry of Rd, u(i) = v(i).

While this approach does not preserve spherical symmetry and energy conservation, it
provides optimal closeness in the sense of the L2 norm. For low-rank approximations
starting from N = 3, the di�usion profile is more faithfully reconstructed, and the
violation of both spherical symmetry and the L1 norm are not perceivable. Energy
conservation can be enforced by scaling the approximation As according to Ãs = As

ÎRdÎ1
ÎAsÎ1

.
Although the new approximation Ãs is not optimal in the L2 sense, it still provides a
perceptionally better match than the Gaussian approximation Ag with the same number
of terms. Thus, our SVD-based approximation scheme yields better performance and the
same or superior visual quality at the same number of 1D convolutions when compared
to the Gaussian approximation (see Figure 5.13).

5.8 Derivation of the Pre-Integrated Approximation

Due to the non-separability of realistic di�usion profiles, it is not possible to fully
reconstruct the e�ect of their convolution with 2D signals by a single separable kernel. It
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5.8. Derivation of the Pre-Integrated Approximation

is, however, possible to completely reproduce a profile’s behavior on a special class of
signals. Below, we present an extended version of the derivation of Equation 5.4,

Me(x, y) =
⁄⁄

E(xÕ, yÕ) Rd(x ≠ xÕ, y ≠ yÕ) dxÕdyÕ

=
⁄⁄ !

E1(xÕ) + E2(yÕ)
"

Rd(x ≠ xÕ, y ≠ yÕ) dxÕdyÕ

=
⁄

E1(xÕ)
⁄

Rd(x ≠ xÕ, y ≠ yÕ) dyÕ

¸ ˚˙ ˝
ap(x≠xÕ)

dxÕ

+
⁄

E2(yÕ)
⁄

Rd(x ≠ xÕ, y ≠ yÕ) dxÕ

¸ ˚˙ ˝
ap(y≠yÕ)

dyÕ

=
⁄

E1(xÕ) aP (x ≠ xÕ) 1
ÎapÎ1

⁄
ap(y ≠ yÕ) dyÕ

¸ ˚˙ ˝
=1

dxÕ

+
⁄

E2(yÕ) aP (y ≠ yÕ)
˙ ˝¸ ˚

1
ÎapÎ1

⁄
ap(x ≠ xÕ) dxÕ dyÕ

=
⁄⁄

E(xÕ, yÕ) 1
ÎapÎ1

ap(x ≠ xÕ)ap(y ≠ yÕ) dxÕdyÕ.

(5.13)

5.8.1 Motivation for the guided rank-1 approximation

Motivated by the high quality of the pre-integrated approximation, we tried to achieve
a practical optimization framework that allows the user to emphasize either near or
far scattering by manipulating only a single parameter, similar to the two-Gaussian
approximation, but starting from an accurate fit to a di�usion profile. For a default
parameter, the output should provide a ‘neutral’ approximation close to the analytically
derived pre-integrated approximation.

Stating the associated optimization problem as

as = argmin
a

⁄

R2
�(x, y)

!
Rd(x, y) ≠ a(x)a(y)

"2
dx dy

subject to ÎRdÎ1 = ÎaÎ2
1,

(5.14)

we derive a separable approximation As(x, y) = as(x)as(y) to the di�use reflectance
profile Rd(x, y). The guide function �(x, y) provides the means to alter the result to
provide the desired artistic e�ect. Since an arbitrary guide function would exhibit a huge
amount of degrees of freedom, we aim to restrict its shape to a one-dimensional subspace
that serves the intended e�ect of pronouncing either near or far scattering.

As a starting point, we tried to determine the guide function that would reproduce the
pre-integrated approximation, i.e., we numerically calculated a guide function �p(x, y)
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5. Modeling Real-Time Subsurface Scattering

such that
ap = argmin

a

⁄

R2
�p(x, y)

!
Rd(x, y) ≠ a(x)a(y)

"2
dx dy

subject to ÎRdÎ1 = ÎaÎ2
1,

(5.15)

where ap is the pre-integrated approximation of the previous Section 5.8. As can be
seen in Figure 5.9a, such a guide function exhibits a rather complicated structure. To
reduce the associated complexity down to a single parameter, we empirically defined a
parametrized guide function

�(x, y; k) =
1
x2 + y2

2k/2
(1 ≠ e≠bx2)(1 ≠ e≠by2). (5.16)

The radially symmetric polynomial term with exponent k serves as external parameter
to either emphasize near or far scattering. A depiction of this function can be found
in Figure 5.9b for k = 1.55. Note that this polynomial term reproduces the behavior
of �p(x, y) on the diagonals (while ignoring the minor normalization-dependent details in
the corners). To reproduce the shape of �p along the coordinate axes, we add ‘suppression’
functions in the form of 1 ≠ e≠bx2 and 1 ≠ e≠by2 , which cause the guide function to vanish
close to the coordinate axis. We chose b = 50 (assuming that x, y œ [≠1, 1]), and the whole
framework is insensitive to moderate changes of this parameter. Varying the parameter k
in the range from 0 to 4 allows the user to generate a separable approximation (as a
result of Equation 5.14) that emphasizes near scattering (towards k = 0) or far scattering
(towards k = 4). Note that no appreciable visual e�ects are observable beyond k = 4.
We have used sequential quadratic programming to minimize Equation 5.14. To avoid
taking on a high-dimensional optimization problem immediately, we solve Equation 5.14
for low-resolution versions of the final kernel. Each optimization is then initialized with
an interpolation of the solution to the next-lower resolution.

5.8.2 Shader Implemention Details

As our technique works in screen space, the size of the kernel is a function of the projected
surface area in the pixel, which depends on depth and surface orientation. This area is
typically specified in world-space units instead of pixels, making the definition of the
kernel size more intuitive for artists. When using a discretized kernel, the e�ect of the
surface orientation can be taken into account by using ad-hoc correction factors [JSG09].

In contrast, using the simplified two-Gaussian artist-friendly model Am allows us to work
on real-world distances: we transform the depth of the pixel being evaluated and of each
sample to world space, and then calculate the distance d between them. This distance is
used to apply the profile on the fly, yielding more accurate results than using derivatives
or ad-hoc correction factors. However, this approach has two problems: (1) we cannot
accurately bake the kernel weights by evaluating the area covered by each sample (so
we can only evaluate the kernel in the sample position), and (2) the number of slots per
sample used by the GPU (as generated by DirectX 11 fxc) increases from 16 in a simple
ad-hoc correction technique to 28, almost halving the performance, making it useless in
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5.8. Derivation of the Pre-Integrated Approximation

(a) �p(x, y) (b) �(x, y; 1.55)

Figure 5.9: Comparison of the guide function that reproduces the pre-integrated approxi-
mation (left) and our parametrized version that provides artistic control (right).

production scenarios. The latter problem has two reasons: a) converting from depth and
pixel position to world-space requires a few additional ALU instructions; b) evaluating
a 2-Gaussian RGB profile requires 6 exp instructions, which are extremely costly to
execute even on modern GPUs.

We solve these problems by following an approach similar to the one proposed by
Mikkelsen [Mik10], splitting the 1D profile application on 3D distances d to 2D distances
dxy with an accurate depth dz correction factor. This transforms the evaluation of the
kernel as:

am

1Ò
d2

xy + d2
z

2
= w G

1Ò
d2

xy + d2
z, ·near

2
+ (1 ≠ w) G

1Ò
d2

xy + d2
z, ·far

2

= w e
≠d2

z
2·near G(dxy, ·near) + (1 ≠ w) e

≠d2
z

2·far G(dxy, ·far)

¥ e
≠d2

z
2·max

1
w G(dxy, ·near) + (1 ≠ w) G(dxy, ·far)

2

= e
≠d2

z
2·max aÕ

m(dxy),

where ·max = max(·near, ·far). Note that we are making the approximation of taking
the maximum variance of the Gaussians, which simplifies the profile application to an
accurate depth correction, versus the ad-hoc corrections used in e.g. [JSG09]. This allows
us to pre-compute accurate weights for aÕ

m(dxy) using area integration, and reduce the
number of instructions to 16 by: a) reducing the number of exp from 6 to a single one;
b) avoiding the conversion to world space by directly working with depths; c) applying
typical low-level optimizations [Per14].
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5. Modeling Real-Time Subsurface Scattering

Figure 5.10: Comparison of the di�erent techniques proposed with d’Eon’s
method [dLE07] with six Gaussians, and the ground truth (actual 2D kernel). Note that
our separable approximations lead to similar quality results with just two 1D convolu-
tions, as opposed to the twelve needed by the sum of Gaussians approach. Note that all
separable rank-1 kernels are highlighted with green.
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5.8. Derivation of the Pre-Integrated Approximation

Figure 5.11: Our results reveal that SVD-based low-rank approximations scale better with
the number of convolutions than the state of the art [dLE07], however, they still yield
only a coarse approximation of the true kernel in the separable case (rank-1). Note that
all separable rank-1 kernels are highlighted in green. The pre-integrated kernel is exact
for axis-aligned functions, such as this example. The guided optimization with k = 2
provides a comparably good fit, while the k = 0 case captures the fine details near the
boundary at the expense of the far-range scattering quality. A manual approximation
using our artist-friendly model is illustrated by two approximations, where for the first
(close fit), perceptual similarity to the ground truth was the modeling objective, while
the second (production) was tweaked by an artist for production purposes.

Figure 5.12: Real-time results for apple. The insets show (from top to bottom) input
irradiance, d’Eon et al. [dLE07] with 1 Gaussian, our analytic kernel pre-integration
technique and the ground truth. Both d’Eon’s with one Gaussian and ours are run with
the same number of convolutions, thereby yielding similar execution times.
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5. Modeling Real-Time Subsurface Scattering

Figure 5.13: Additional results reveal the inherent shape and quality of the separable and
low-rank approximations on a white disk irradiance signal. Please note that, although
the radial asymmetry of our separable kernels and the gradient-color di�erences of the
manual approximations are noticeable in case of the artificial ‘dot’ illumination, these
artifacts are less noticeable in case of our practical rendering examples.

(a) (b) 13 (Non-Jitt.) (c) 65 (Non-Jitt.) (d) 13 (Jittered)

Figure 5.14: In harsh lighting conditions, extreme close-ups may reveal artifacts even in
the presence of importance sampling. (a) Initial image; (b) Importance sampling with 13
samples shows banding artifacts (please zoom in in the digital version for a better view);
(d) Up to 65 samples are needed to eliminate visible banding; (c) Our jittering approach
also eliminates banding while keeping the sample count low (this image is best viewed in
the digital version).
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5.8. Derivation of the Pre-Integrated Approximation

(a) Without jittered sampling (b) With jittered sampling (c) Ground truth

Figure 5.15: This figure illustrates that our jittered sampling scheme is able to remove
banding artifacts stemming from the radial asymmetry of our separable kernels. The
images represent our manual approximation (close fit) of human skin, which shows visible
artifacts if no jittering is used (a), but is able to approximate the ground truth (b) in a
visually plausible way if 33% of the samples are jittered (c).
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5. Modeling Real-Time Subsurface Scattering

Figure 5.16: Typical cases found in games, for which the technique is designed.
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5.9. Profile Simulation (MCML)

5.9 Profile Simulation (MCML)

The di�use reflectance profiles were simulated using MCML [WJZ95]. The material
parameters used for our simulations were taken from an earlier work [JMLH01]. For
each material, the RGB channels were simulated separately. Aside from the material
properties, each channel used the same parameters specified as follows:

No. Photons: 107

Grid spacing: the minimum mean free path divided by 20 (dr = min(MF Prgb)
20 ).

No. of grid elements: 32 times the maximum mean free path divided by dr (nr =
Á32úmax(MF Prgb)

dr
Ë).

Thickness: 107 cm (quasi-infinite).

The mean free path is computed as 1
‡Õ

t
= 1

‡a+‡Õ
s
. As we model isotropic scattering (g = 0),

the reduced scattering coe�cient is trivial, i.e., ‡Õ
s = ‡s. For the use with MCML, all

parameters are also converted to cm, cm≠1 or cm≠2 respectively. MCML simulates
cylindrically symmetric tissue models, and outputs the di�use reflectance profile as a 1D
function, Rd(r). Detailed material parameters, plots of the simulated profiles as well as
the derived radially symmetric 2D profiles are included in Section 5.9.1.

5.9.1 Simulation Parameters and Results

This section includes the properties of each measured material, simulated 1D profile plots
and derived 2D profiles for each material. This gives a detailed description of the input to
our method. The 1D profiles shown in the first two subplots are weighted by 2fir because
the magnitude of the profile at a certain r value represents the reflectance on a complete
circle of the radially symmetric 2D profile, whose area increases as r is increasing. It is
worth noting that although all three channels were simulated up to the same maximum
radius, the 1D profile plot may falsely suggest otherwise. In the case of the logarithmic
scale plots, all profile values near machine precision are omitted by the plot function.
In the MFP plots, all channel radii are scaled by the their respective MFP values, and
therefore each channel has di�erent support on the x axis. Additionally, all MFP plots
show the unweighted profiles, and the 2D plots visualize only the most significant center
region.
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5. Modeling Real-Time Subsurface Scattering

5.9.2 Apple

Apple ‡a (mm≠1) [RGB] ‡s (mm≠1) [RGB] ÷ g Thickness (cm)
Layer 1 [0.0030, 0.0034, 0.0460] [2.2900, 2.3900, 1.9700] 1.3000 0.0000 107

Figure 5.17: Apple - Scattering properties
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Figure 5.18: Apple - Simulation
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5.9. Profile Simulation (MCML)

5.9.3 Chicken1

Chicken1 ‡a (mm≠1) [RGB] ‡s (mm≠1) [RGB] ÷ g Thickness (cm)
Layer 1 [0.0150, 0.0770, 0.1900] [0.1500, 0.2100, 0.3800] 1.3000 0.0000 107

Figure 5.19: Chicken1 - Scattering properties
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Figure 5.20: Chicken1 - Simulation
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5. Modeling Real-Time Subsurface Scattering

5.9.4 Chicken2

Chicken2 ‡a (mm≠1) [RGB] ‡s (mm≠1) [RGB] ÷ g Thickness (cm)
Layer 1 [0.0180, 0.0880, 0.2000] [0.1900, 0.2500, 0.3200] 1.3000 0.0000 107

Figure 5.21: Chicken2 - Scattering properties
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Figure 5.22: Chicken2 - Simulation
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5.9. Profile Simulation (MCML)

5.9.5 Cream

Cream ‡a (mm≠1) [RGB] ‡s (mm≠1) [RGB] ÷ g Thickness (cm)
Layer 1 [0.0002, 0.0028, 0.0163] [7.3800, 5.4700, 3.1500] 1.3000 0.0000 107

Figure 5.23: Cream - Scattering properties
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Figure 5.24: Cream - Simulation
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5. Modeling Real-Time Subsurface Scattering

5.9.6 Ketchup

Ketchup ‡a (mm≠1) [RGB] ‡s (mm≠1) [RGB] ÷ g Thickness (cm)
Layer 1 [0.0610, 0.9700, 1.4500] [0.1800, 0.0700, 0.0300] 1.3000 0.0000 107

Figure 5.25: Ketchup - Scattering properties
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Figure 5.26: Ketchup - Simulation
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5.9. Profile Simulation (MCML)

5.9.7 Marble

Marble ‡a (mm≠1) [RGB] ‡s (mm≠1) [RGB] ÷ g Thickness (cm)
Layer 1 [0.0021, 0.0041, 0.0071] [2.1900, 2.6200, 3.0000] 1.5000 0.0000 107

Figure 5.27: Marble - Scattering properties
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Figure 5.28: Marble - Simulation
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5. Modeling Real-Time Subsurface Scattering

5.9.8 Potato

Potato ‡a (mm≠1) [RGB] ‡s (mm≠1) [RGB] ÷ g Thickness (cm)
Layer 1 [0.0024, 0.0090, 0.1200] [0.6800, 0.7000, 0.5500] 1.3000 0.0000 107

Figure 5.29: Potato - Scattering properties
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Figure 5.30: Potato - Simulation
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5.9. Profile Simulation (MCML)

5.9.9 Skimmilk

Skimmilk ‡a (mm≠1) [RGB] ‡s (mm≠1) [RGB] ÷ g Thickness (cm)
Layer 1 [0.0014, 0.0025, 0.0142] [0.7000, 1.2200, 1.9000] 1.3000 0.0000 107

Figure 5.31: Skimmilk - Scattering properties
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Figure 5.32: Skimmilk - Simulation
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5. Modeling Real-Time Subsurface Scattering

5.9.10 Skin1

Skin1 ‡a (mm≠1) [RGB] ‡s (mm≠1) [RGB] ÷ g Thickness (cm)
Layer 1 [0.0320, 0.1700, 0.4800] [0.7400, 0.8800, 1.0100] 1.3000 0.0000 107

Figure 5.33: Skin1 - Scattering properties
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Figure 5.34: Skin1 - Simulation
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5.9. Profile Simulation (MCML)

5.9.11 Skin2

Skin2 ‡a (mm≠1) [RGB] ‡s (mm≠1) [RGB] ÷ g Thickness (cm)
Layer 1 [0.0130, 0.0700, 0.1450] [1.0900, 1.5900, 1.7900] 1.3000 0.0000 107

Figure 5.35: Skin2 - Scattering properties
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Figure 5.36: Skin2 - Simulation

101



5. Modeling Real-Time Subsurface Scattering

5.9.12 Wholemilk

Wholemilk ‡a (mm≠1) [RGB] ‡s (mm≠1) [RGB] ÷ g Thickness (cm)
Layer 1 [0.0011, 0.0024, 0.0140] [2.5500, 3.2100, 3.7700] 1.3000 0.0000 107

Figure 5.37: Wholemilk - Scattering properties
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Figure 5.38: Wholemilk - Simulation
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5.10. Rendering

Figure 5.39: Although jittering for a radius of 10% of the kernel size is enough for usual
portrait distances and resolutions of 1080p, extreme close-ups may reveal artifacts due
to the non-separability of the kernel in these conditions (a). Performing jittering on a
radius of 30% completely removes these artifacts (b), visually matching the result of the
ground truth kernel (c). Also note that a kernel designed to match this particular asset
using our artist-friendly model (d) shows a more natural look (this image is best viewed
in the digital version).

5.10 Rendering

Our approximation of the di�usion profile, which is represented as just one separable
kernel, can be applied both in texture- and in screen space. For e�ciency, we use
the screen-space approach of Jimenez et al. [JSG09], including translucency [JWSG10],
separating into di�erent bu�ers the albedo, di�use and specular components, simulating
subsurface transport only in the di�use layer, and compositing for final rendering. In the
following, we highlight additional improvements to the rendering pipeline, resulting in an
optimized code of just 16 instructions per sample.

Jittering. Our separable approximations may lead to some artifacts under high-
frequency illumination, as shown in Figure 5.40. This is because the spatial footprint of
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5. Modeling Real-Time Subsurface Scattering

Figure 5.40: In harsh lighting conditions, progressively smaller features may reveal the
fact that the applied separable profiles are not radially symmetric.

the signal becomes smaller than the bandwidth of the kernel, producing an asymmetric
star-like pattern. This situation is common also in high-quality, close-up shots, showing
for example the pores of skin in detail.

To alleviate this problem, we apply a randomized per-pixel rotation of the filtering axes,
similar to Huang et al. [HBR+11]. Using a randomized rotation, as opposed to other
alternatives such as kernel jittering, has two key advantages: (i) it breaks the visible cross
pattern; and (ii) due to the radial symmetry of the di�usion kernel, it is not necessary
to reintegrate the kernel, since distances are preserved. To avoid GPU cache thrashing,
we only apply this to samples close to the pixel being evaluated (closer than 10% of the
kernel size in our implementation, although it is dependent on the zoom and the used
kernel; for extreme close-ups and kernels modeled with very di�erent Gaussian lobes,
a higher range would be needed, as shown in Figure 5.39). This solves the artifacts in
small-scale features such as skin pores, although for higher-scale features, such as the
light dot in Figure 5.40, there may still be visible artifacts (note however that this is
a pathological case, not common in real-world applications). Figure 5.39 demonstrates
the e�ects of randomizing the sample positions. Note that, in addition to masking the
artifacts, it also reduces banding problems due to under-sampling.

Kernel footprint and evaluation. For the screen-space method, the size of the
convolution kernel is a function of the projected surface area of the pixel [JSG09]. For the
continuous approximation (Section 5.5), we follow similar derivations as Mikkelsen [Mik10]:
these allow (i) applying the kernel accurately in world-space, as opposed to using ad-hoc
correction factors [JSG09], and (ii) computing the exact areas for each sample o�ine,
while (iii) still being fast enough for demanding real-time applications.

Importance sampling. To compute the convolution with the 1D functions of the
approximation (e.g., ap in Equation 5.5) during rendering, they need to be discretized.
In general these functions exhibit a very uneven energy distribution, so a uniform
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5.11. Results

Figure 5.41: The quality of the rendered images, with and without importance sampling
of the approximated kernel. (a) Initial image; (b) Uniform sampling with only seven
samples leads to obvious aliasing artifacts; (c) Ground-truth created by uniform sampling
with 513 samples; (d) Our importance sampling with as low as seven samples.

discretization will either require a high resolution for acceptable quality, which entails a
significant performance impact, or result in aliasing when a lower resolution is used. To
solve this issue, we use importance sampling on the 1D function by allocating a greater
amount of sample points near the center, where most of the energy of the signal is found.

In order to minimize the execution time and the number of memory accesses, we sample
all channels at the same positions determined by the dominant channel. In Figure 5.41,
we demonstrate the di�erence in image quality with importance sampling compared to
the ground truth and uniform sampling. In this particular portrait shot under natural
lighting, using 7 samples with importance sampling allows a faithful representation of
skin subsurface scattering. This importance sampling can also be used to improve the
quality of previous methods, such as the sum-of-Gaussians approach [dLE07, JSG09].

5.11 Results

We validate our proposed techniques with a range of di�erent translucent materials.
Figures 5.1 (left), 5.6, and 5.42 depict human skin. Figure 5.7 compares between the
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5. Modeling Real-Time Subsurface Scattering

Kernel ‡n [RGB] ‡f [RGB] w

Close fit [0.034, 0.029, 0.016] [1, 0.48, 0.2] 0.37
Production [0.25, 0.08, 0.02] [1, 0.3, 0.05] 0.6

Table 5.2: Parameters for our artist-friendly separable model with two di�erent fits
illustrated in our results.

di�erent methods also using the skin di�usion profile. Figure 5.43 features results for
soap and marble, while Figure 5.1 (right) shows ketchup.

We note that the execution time of every technique described in this manuscript is
dominated by the convolution computation, so their timings are roughly proportional to
the number of convolutions they require (i.e., six Gaussians is approximately six times
slower than our separable approximation). Figure 5.6 compares between our separable
approximation, the current state-of-the-art [dLE07, JSG09], and the ground-truth 2D
convolution: our pre-integrated kernel gives visually convincing results and can be
computed analytically from an arbitrary profile. This enables subsurface scattering to
be viable for severely time-constrained real-time applications. Note that in the case of
a one-dimensional irradiance signal, such as the one in Figure 5.7, the pre-integration
technique yields the analytic ground truth.

While the artist-controlled approximation allows designing the di�usion arbitrarily, it
can also be used to match a specific profile manually; although not as exact as the
pre-integrated technique, it still captures key features in a visually convincing way, such
as color bleeding into the shadowed region, and it can be seamlessly used in production
scenarios. The close-fit kernel for human skin (Figures 5.7, 5.6 and 5.39(b,c)) shows
how the two-Gaussian artistic model can be used to approximate the ground truth. We
again emphasize that this two-Gaussian approach is di�erent from the sum of Gaussians
proposed by d’Eon et al. To demonstrate the editing capabilities of our artist-friendly
model, we show results using di�erent types of skin, including one actually developed by
an artist for improving the results in our particular assets, and another trying to mimic
the exact skin di�usion profile (Figure 5.7), and that we can adapt the appearance of
translucency to the goal asset, as seen in Figure 5.39(d). The parameters for both kernels
are included in Table 5.2.

Our general convolution scheme can be implemented in both texture- and screen space.
In the latter, the size of the kernel is a function of the projected surface area in the
pixel [JSG09]. As this leads to a favorable fixed-cost property that is sought-after in real-
time applications, we believe these techniques o�er a desirable choice for such scenarios.
Our method does not require any additional considerations for dynamic objects and
moving light sources, and scales well with the area (0.498, 0.348 and 0.304 ms at 1080p
on an AMD Radeon HD 7970 for a close-up, middle and long shot respectively). The
quality of the simulation can be adjusted by setting the number of samples in the kernel,
which gives a trade-o� between quality and cost.
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5.12. Conclusions

Figure 5.42: A close-up comparison before (bottom right) and after (top right) applying
our separable subsurface-scattering model. Note that without taking into account
subsurface light transport, the realism of the image is lost.

Limitations and future work. As discussed previously, trading o� radial symmetry
for separability might create some artifacts revealing the inherent shape of the kernel in
extreme close-up views with high-frequency illumination. While the jittering proposed
in Section 5.10 generally solves this issue for very small-scale details (e.g., skin pores),
some artifacts may still remain in some situations (Figure 5.40). However, we have not
experienced this phenomenon in any of the practical cases.

Section 5.3 shows how the error of our reconstruction is determined by the squared sum
of the higher-order singular values. Our method relies on taking advantage of the fact
that even though the di�usion profiles are of moderately high rank, the information
contained therein is highly structured. Using our separable model, we have been able to
match the target profiles well in terms of RMS error.

Since the pre-integrated approximation yields a faithful reconstruction of the di�usion
profile with only one separable convolution, a low-rank approximation can be found
by approximating the di�erence between the pre-integrated kernel and the di�usion
profile. This could lead to better low-rank approximations. In our use cases, a low-rank
SVD-based reconstruction already provided su�cient quality for ranks equal or larger
than three (we have shown results in Section 5.7.). This suggests that an SVD-based
reconstruction of di�usion kernels might be very useful for simulating e�cient high-quality
subsurface scattering in o�-line or interactive environments.

5.12 Conclusions

We have presented two techniques to generate separable approximations of di�use
reflectance profiles to simulate subsurface scattering for a variety of materials using
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5. Modeling Real-Time Subsurface Scattering

Figure 5.43: Real-time results for soap and marble. The insets show (from top to bottom)
input irradiance, the sum-of-Gaussians approach [dLE07] with 1 Gaussian, our analytic
kernel pre-integration technique and the ground truth. Both the sum of Gaussians and
ours are run with the same number of convolutions, thereby yielding similar execution
times. Our method is able to faithfully capture the e�ect of subsurface scattering in
shadowed regions (soap), and retains intricate texture features (dragon).

just two 1D convolutions. Our separable models yield state-of-the-art results in less than
0.5 millisecond per frame, which makes high-quality subsurface scattering a�ordable even
in the most challenging real-time contexts such as games, where every desired e�ect may
have a budget of tenths of a millisecond.

Using axis-aligned pre-integration, we have presented a high-quality separable approx-
imation that is provably optimal for additively separable irradiance signals. We also
proposed an artist-friendly model that allows intuitive artistic control on the appear-
ance of subsurface scattering based on only three parameters, and that allows seamless
integration into our separable framework. We have additionally shown that low-rank
approximations based on matrix factorization yield higher performance than the sum of
Gaussians, which suggests an interesting avenue of future work for e�cient subsurface
scattering simulation.
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5.12. Conclusions

Our algorithm works as a post-processing step, which makes it very e�cient and simple
to integrate in existing rendering pipelines, reducing the complex subsurface light trans-
port [JMLH01] to its barebones (a seven samples blur filter with 16 assembly instructions
per sample). Moreover, we have shown how combining importance sampling and jittering
strategies allows using only seven samples per pixel in many cases of practical interest.
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CHAPTER 6
Concluding Remarks

In this chapter, we provide a short summary of the main contributions of our projects.

6.1 Summary

In this thesis, we set out to improve the realism of modern rendering systems by improving
the process of synthesizing photorealistic material models and proposed a technique to
improve the state of the art in real-time subsurface light transport. Our first material
synthesis method, Gaussian Material Synthesis, enables novice users to perform
material synthesis without engaging in direct interaction with a “principled” shader
that typically requires significant expertise in material modeling. This method starts
by presenting the user with a gallery, and proceeds to generate an arbitrary amount of
high-quality material models that are in line with their preferences. We also proposed a
neural renderer that is able to mimic a light transport simulation program and visualize
these material samples faithfully within a few milliseconds, thereby opening up the
possibility of exploring these material models in real time. To further accentuate the
advantages of this property of our method, we also proposed a learning-based technique
that helps visualizing variants of a target material – this leads to a novel workflow where
the artist can rapidly fine-tune a chosen material in real time without any expertise in
photorealistic material synthesis. When more than a handful of materials are sought,
even expert users are expected to see a speedup in the creation of these materials.

Our second method, Photorealistic Material Editing Through Direct Image
Manipulation, o�ers a way for artists to reuse their general image-processing expertise
to create sophisticated photorealistic material models. This process starts with the user
applying well-known transformations (e.g., colorization, image inpainting) to a target
image in a 2D raster editor, resulting in a non-physical image that often cannot be
achieved by means of photorealistic rendering. However, our key observation is that in
many cases, solutions can be found that are remarkably close to this target image. In
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order to find these solutions, we proposed a neural network that o�ers an initial guess
that is further refined by our optimizer. This yields a simple and robust method that
executes within 30 seconds, supports image sequences and works even in the presence of
poorly edited images.

Finally, in Separable Subsurface Scattering, we have presented a practical method
to simulate subsurface light transport for a variety of translucent materials by using
only two convolutions. This technique yields state-of-the-art results in less than 0.5
milliseconds per frame, which makes it a�ordable even in the most challenging real-time
contexts, such as modern games, where every desired e�ect has at most a budget of a few
milliseconds. Our technique is based on representing the simulated di�use reflectance
profile by a separable kernel, can be performed through as few as two convolutions, where
the established sum-of-Gaussians approximation would require many more passes to
achieve the same visual quality, which leads to a significant reduction of both execution
time and memory consumption. Since the algorithm is introduced as a post-processing
step, it is remarkably simple to integrate into existing rendering pipelines, is suitable for
challenging real-time applications and is practically free on modern graphics hardware.
Animation and dynamic objects are also supported without any additional overhead or
further changes. Moreover, we have o�ered a simplified approach, suitable for artistic
editing of scattering profiles, and have shown how combining importance sampling and
jittering strategies allows, in some cases, using only seven samples per pixel.

Creating beautiful photorealistic images and animations requires a high-quality rendering
system that supports many of the most important light-transport phenomena appearing
around us. However, on the other hand, we also have to be vigilant of the fact that
these systems are used by people that are adept at carrying out their artistic vision,
but do not have a rigorous understanding of the many physical quantities we use in
these simulations. Hence, in this thesis, we endeavored to not only push the realism
and e�ciency of subsurface light transport techniques, but create tools that are e�cient
and enjoyable to use for novice and expert users alike. However, as research works often
raise at least as many new questions as they answer, there are, of course, many ways to
continue and improve our work.

6.2 Directions For Future Work

We are delighted to see the first works building on these ideas and endeavored to present
them in a general manner to be useful for applications in a variety of areas within (and
perhaps beyond) computer graphics. In this section, we discuss a selection of already
existing follow-up works and point to a few promising directions for further improving
these techniques.
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6.2. Directions For Future Work

6.2.1 Gaussian Material Synthesis

Within the first two years of its appearance, this work has attracted a direct follow-up
paper improving our neural renderer [KSSN19], an independent, third-party implementa-
tion for the Blender modeling program, and a handful of citations. Our teaser image
has also appeared as the cover photo for the Transactions on Graphics journal. We hope
that this work will continue to provide fertile ground for potential follow-up works, and
can still be extended in a variety of di�erent directions – we briefly summarize the ones
we have found to be the most promising ideas. Incorporating active learning schemes
[KGUD07] may further improve the sample-e�ciency of the initial learning process,
thereby requiring fewer interactions from the artist before the recommendations are
created. Our multi-round recommendation scheme can also be refined, e.g., by observing
the confidence values of di�erent regions in a 2D latent space and tuning the number
of per-round samples required to proceed, thereby improving the sample-e�ciency of
the GPR step. These confidence values can also be used to guide the active learning
process towards unexplored regions in the high-dimensional shader space. Moreover, the
resolution of the neural renderer depends on the used architecture and the on-board mem-
ory of the GPU, and hence, can be improved through AutoML [FKE+15]/architecture
search methods [ZL16] and advances in hardware design. Furthermore, the artist needn’t
be presented with stationary images – these gallery samples can be changed to small
animations with di�erent lighting setups or potentially include motion [MLMG19] to
further enhance the perception of these materials. We also look forward to experimenting
with not only recommending point samples from the latent space, but perform walks
that minimize a set of functionals that are useful for material synthesis. We have used
uniform sampling to build the training data for this neural network. The accuracy of
the neural renderer can likely be further improved through an adaptive, non-uniform
sampling of the parameter space for the training set.

6.2.2 Photorealistic Material Editing Through Direct Image

Manipulation

This method is capable of inferring a photorealistic material when given an image of
a marked up image from the artist. This process was demonstrated on a principled
shader model that contains the most commonly used materials (e.g., di�use, specular,
transparent and translucent materials), however, the generality of our formulation o�ers
the possibility of plugging in other kinds of material models. We have named a few
promising candidates, e.g., thin-film interference [Dia91, IWR+15], fluorescence [WTP01]
birefringence [WW08], microfacet models [HHdD16] layered materials [Bel18, ZJ18], and
more. The relative importance of the di�erent image regions can also be emphasized via
a weighting function, thereby guiding the optimizer to prioritize a select set of aspects
of the drawn input image, such as a specular highlight. Similarly to goal-based caustic
design methods [PJJ+11], setting up a scene with a receiver object may also open up the
possibility of drawing a desired caustic pattern and letting our two-stage method find a
material that casts a caustic pattern of the sought shape.
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6.2.3 Separable Subsurface Scattering

This technique was developed as a collaboration with Activision-Blizzard, and has been
used in some of their real-time computer game titles. Creating a work that stands
its ground in industry applications and also has a solid scientific and mathematical
background was quite a challenge. In order to accommodate both sides, with the artist-
friendly model, we endeavored to o�er a method that maximizes artistic freedom, while
our pre-integrated model has proven mathematical guarantees, the SVD-based method
provides an easy way to obtain an acceptable quality result within a prescribed (and likely
short) time limit. We encourage future research works that strike di�erent tradeo�s that
are relevant both for the research community and the industry. We also welcome a variety
of creative follow-up works that include the e�ect of subsurface scattering when creating
high-resolution facial scans [FJA+14], build a biophysical model to simulate and render
skin aging [IGAJG15], use it for lighting design [SPB16], or even move beyond normal
incidence for di�usion profiles and include directionality to the subsurface-scattering
process [DCFMB17].

We look forward to seeing these ideas applied to new and unexplored problems within
(and beyond) computer graphics and machine learning.

6.3 Acknowledgements, Credit Assignment

As this thesis is aimed at material synthesis and subsurface light transport, a handful
of well-made scenes with fine geometry are required to accentuate the material models
generated with our methods. In this section, we credit the amazing artistic work of people
who created these scenes, followed by a thank you message to everyone who helped us on
our journey.

6.3.1 Gaussian Material Synthesis

We would like to thank Robin Marin for the material test scene and Vlad Miller for his help
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number P27974. Scene and geometry credits: Gold Bars – JohnsonMartin, Christmas
Ornaments – oenvoyage, Banana – sgamusse, Bowl – metalix, Grapes – PickleJones,
Glass Fruits – BobReed64, Ice cream – b2przemo, Vases – Technausea, Break Time –
Jay–Artist, Wrecking Ball – floydkids, Italian Still Life – aXel, Microplanet – marekv,
Microplanet vegetation – macio.
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6.3.2 Photorealistic Material Editing Through Direct Image

Manipulation
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the materials for the Paradigm (Fig. 4.1) and Genesis scenes (Fig. 4.2), ianofshields for
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Swap under CC-BY licence: longrender for the Dish model, metalix for the Green apple
model, betomo16 for the Plant model, and PickleJones for the Grapes model. We also
thank Felícia Fehér for editing the figures. This research has been partially funded
by the European Commission, 7th Framework Programme, through projects GOLEM
and VERVE, the Spanish Ministry of Economy and Competitiveness through project
LIGHTSLICE, and project TAMA, and the Austrian Science Fund (FWF) through
project no. P23700-N23.

115





List of Figures

1.1 A standard simulation of the rendering equation assumes no participating
medium and bounces rays of light o� of the surface of solid objects. . . . 6

1.2 The radiative transport equation introduces participating media in the simu-
lation process, and thus, intersection points can appear anywhere in space
and need not to be attached to object boundaries. . . . . . . . . . . . . . 8

1.3 A simulation that includes computing subsurface light scattering and absorp-
tion events through the BSSRDF (right) opens up the possibility of visualizing
a rich selection of translucent materials. . . . . . . . . . . . . . . . . . . . 10

1.4 The di�usion profile emerging over a homogeneous material from a normally
incident, infinitesimally thin pencil beam. The design of this image was
inspired by Habel et al.’s work [HCJ13]. . . . . . . . . . . . . . . . . . . . . 11

1.5 Our work adds subsurface light transport to the irradiance signal as a simple
post-processing step. Source: Christian Freude’s corresponding thesis on our
project [Fre15]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.6 Our simulation of the di�usion profile of skim milk on the three representative
wavelengths. Note that as Rd(r) is symmetric for isotropic, homogeneous
materials, it only depends on the distance r and it is su�cient to visualize
one half of the distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1 Chen et al.’s work [CXY+15] (also the source of this image) recommends a set
of material models for indoor scenes that satisfy a user-specified color scheme. 14

2.2 d’Eon et al.’s seminal work on subsurface scattering [DI11] (also the source of
this image) adds the di�usion e�ect to the albedo and irradiance signals (1st
and 2nd layers) by convolving a set of of Gaussians (3rd to 7th layers) and
combines it with specularity information (8th layer) to produce a high-quality
final image (9th layer). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

117



3.1 Our system opens up the possibility of rapid mass-scale material synthesis for
novice and expert users alike. This method takes a set of user preferences as an
input and recommends relevant new materials from the learned distributions.
On the left, we populated a scene with metals and minerals, translucent,
glittery and glassy materials, each of which was learned and synthesized via
our proposed technique. The image on the right showcases rich material
variations for more than a hundred synthesized materials and objects for the
vegetation of the planet. The learning and recommendation steps take less
than a minute. The following materials were synthesized for the Microplanet
scene: dandelions (upper part of the planet, high color variation), daisies (the
white color is fixed, the core follows a slight color variation), staghorn tree
(upper left), sweet pepper bush (lower right), Kentucky blue grass and rye
(general vegetation covering the planet), the water stream in the middle (one
material, extended shader). The following materials were given: the bark of
the staghorn tree in the upper left, the procedural dirt material on the surface
of the planet and the background HDR image. . . . . . . . . . . . . . . . 22

3.2 Glassy materials learned and synthesized by our technique using 150 training
samples, 46 of which obtained a score greater than zero. . . . . . . . . . . 23

3.3 This scene was generated using our automatic workflow. The recommen-
dations of our system are controllable, i.e., the user can easily adjust the
recommendation thresholds to fine-tune the amount of variety in the output
distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 In the first step, the user is presented with a gallery and scores the shown
materials according to their taste. Then, a regression is performed to obtain a
preference function via Gaussian Process Regression, which can be e�ciently
sampled for arbitrarily many new material recommendations. These recom-
mendations can be visualized in real time using our neural network in a way
that closely resembles the images rendered with global illumination. In the
final step, the recommended materials can be conveniently assigned to an
existing scene. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5 A high-level overview of our pipeline: GPR is used to learn the user-specified
material preferences and recommend new materials which are subsequently
visualized using our Convolutional Neural Network. Optionally, GPLVM can
be used to provide an intuitive 2D space for variant generation. . . . . . . 28

3.6 Our decoder network takes the shader description as an input and predicts
its appearance. Due to the fact that we have an atypical problem where the
input shader dimensionality is orders of magnitude smaller than the output,
the input signal is subjected to a series of 1D convolution and upsampling
steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.7 The best (left side) and worst-case (right side) predictions by our neural
network on a set of 250 images. Mean PSNR: 37.96dB, minimum: 26.05dB,
maximum: 48.70dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
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3.8 An additional desirable property of our proposed neural network is that it
contains just enough layers to infer the most important features, but not
enough to represent the high-frequency noise in the dataset. . . . . . . . . 33

3.9 Endowing the latent space with the expected preferences (upper left) and
similarities (lower right). The green dots represent the embedded training
samples, where the blue dot shows the reference input material to be fine-
tuned. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.10 Synthesized glittery materials (above) followed by metals and minerals (below)
using our extended shader. . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.11 The Microplanet scene from the teaser image, magnified. . . . . . . . . . . 45
3.12 Our principled shader for generating a wide variety of possible displacements. 45
3.13 The Toy Tea Set scene showcasing translucent material models learned by

our technique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.14 Gaussian Process Regression in 1D and the corresponding JSD and execution

timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.15 The Still Life scene from the teaser image, magnified. . . . . . . . . . . . 47
3.16 The color-coded 2D latent space can be explored in real time by the user for

variant generation. The vividness of the recommended grape material can be
fine-tuned rapidly without any domain knowledge. . . . . . . . . . . . . . 48

3.17 Even for more challenging cases, the presence of Automatic Relevance Deter-
mination stabilizes the GPR reconstruction quality around 150-250 training
samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.18 Time taken to generate 1, 10, and a 100 similar materials by hand for
users of di�erent experience levels versus our technique (with the GPR and
recommendations steps). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1 We propose a hybrid technique to empower novice users and artists without
expertise in photorealistic rendering to create sophisticated material models
by applying standard image editing operations to a source image. Then,
in the next step, our method proceeds to find a photorealistic BSDF that,
when rendered, resembles this target image. Our method generates each of
the showcased fits within 20-30 seconds of computation time and is able to
o�er high-quality results even in the presence of poorly-executed edits (e.g.,
the background of the gold target image, the gold-colored pedestal for the
water material and the stitched specular highlight above it). Scene: Reynante
Martinez. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 To demonstrate the utility of our system, we synthesized a new material and
deployed it into an already existing scene using Blender and Cycles. In this
scene, we made a material mixture to achieve a richer and foggier nebula e�ect
inside the glass. Left: theirs, right: 50% theirs, 50% ours. Scene: Reynante
Martinez. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
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4.3 Our proposed hybrid technique o�ers an intuitive workflow where the artist
takes a source material (∂) and produces the target image by applying the
desired edits to it within a 2D raster image editor of their choice (∑). Then,
one or more encoder neural networks are used to propose a set of approximate
initial guesses (∏) to be used with our neural network-augmented optimizer
(π), which rapidly finds a photorealistic shader setup that closely matches
the target image (∫). The artist then finishes the process by assigning this
material to a target object and renders the final scene o�ine. . . . . . . . 54

4.4 Whenever the target image strays too far away from the images contained
within their training set (lower right), our 9 inversion networks typically fail
to provide an adequate solution and potentially predict results outside the
feasible region (∑, Ω, æ). However, using our “best of n” scheme and our
hybrid method, the best performing prediction of our neural networks can be
used to equip our optimizer with an initial guess, substantially improving its
results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.5 Results for three techniques on common global colorization operations in-
cluding saturation increase and grayscale transform. The “reference material”
labels showcase materials that can be obtained using our shader and are used
as source images for the materials below them, where the arrows denote the
evolution of the target image. . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.6 Our image sequence starts with an input that is achievable using our shader
(upper left), where each animation frame slightly increases its black levels.
The lower right region showcases the 300th frame of the animation. . . . . 68

4.7 The recorded modeling times reveal that if at most a handful (i.e., 1-10) of
target materials are sought, our technique o�ers a favorable entry point for
novice users into the world of photorealistic material synthesis. . . . . . . 68

4.8 Results for three techniques on local image editing operations and image
mixing. The “reference material” labels showcase materials that can be
obtained using our shader and are used as source images for the materials
below them, where the arrows denote the evolution of the target image. . 69

4.9 Our technique is especially helpful early in the material design process where
the user seeks to rapidly iterate over a variety of possible artistic e�ects. Both
material types were synthesized using our described method. We demonstrate
this workflow in our supplementary video. . . . . . . . . . . . . . . . . . . 70

5.1 Real-time results of our method for simulating translucent materials (skin on
the left, ketchup on the right). Our separable subsurface-scattering method
enables the generation of these images using only two convolutions (versus
12 in the sum-of-Gaussians approach [dLE07, JSG09]) and seven samples per
pixel, while featuring quality comparable with the current state of the art, at
a fraction of its cost. It can be implemented as a post-processing step and
takes only 0.489 ms per frame on an AMD Radeon HD 7970 at 1080p, which
makes it highly suitable for challenging real-time scenarios. . . . . . . . . . 71
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5.2 Decay of the singular values in the singular value decomposition of a di�use
reflectance profile used to simulate subsurface scattering in skin. Only the
components associated to the first few singular values contribute appreciably
to the reconstruction of the profile, making a low-rank approximation feasible.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3 Overview of our approach: based on the low-rank nature of the di�usion
kernel Rd(x, y), shown by the � matrix below storing the singular values of
the kernel (magnitude in grayscale), we approximate Rd(x, y) with A(x, y) =
a1(x)a1(y). This simplifies the simulation of subsurface scattering (right) to
just two 1D convolutions per summand with the irradiance signal. . . . . 75

5.4 Results of rank-N approximations obtained using the SVD of the discrete
di�usion profile for skin, for N = {1, 3, 6}. Using the SVD’s rank-1 (separable)
approximation leads to poor results, since most of the kernel’s energy is stored
in the center of the kernel. Increasing the rank of the approximation leads
to a more faithful approximation of the di�usion kernel, but at the cost of
introducing several passes, which makes it ine�cient for time-constrained
applications. We refer the reader to Section 5.7 for more results using the
SVD low-rank approximation. . . . . . . . . . . . . . . . . . . . . . . . . 76

5.5 Plot of our pre-integrated kernel compared to the ground truth for human
skin, in both the axial and diagonal directions; it can be seen that due to the
loss of radial symmetry, our kernel gives di�erent results for the axial and
diagonal directions, as opposed to the ground-truth kernel. Note that our
method does not try to mimic the kernel to be close to the 2D di�usion kernel,
but it tries to match the final result of the convolution (Figure 5.6 and 5.7).
Additional comparisons can be found in the Section 5.7. . . . . . . . . . 77

5.6 Comparison of the di�erent techniques proposed with a six-Gaussian fit for
skin [dLE07, JSG09] and the ground truth (2D kernel). Note that our separa-
ble approximations lead to similar quality results with just two 1D convolutions,
as opposed to the twelve needed by the sum-of-Gaussians approach. . . . 78

5.7 Comparison of the results for our two separable techniques applied to a step-
like irradiance: both the sum-of-Gaussians [dLE07, JSG09] and a low-rank
SVD-based decomposition need several convolutions to match the true kernel.
Our proposed pre-integrated kernel, however, is exact for axis-aligned functions,
such as this example. Our artist-friendly model provides a rich design space:
This is illustrated by two approximations, where for the first (close fit),
perceptual similarity to the ground truth was the modeling objective, while
the second (production) was tweaked by an artist for production purposes. The
style of presentation was inspired by previous work [DI11, HCJ13]. Additional
2D visualizations of the di�erent kernels are provided in Section 5.7, where
we also demonstrate that the radial asymmetry of the SVD-based kernels
vanishes rapidly with increasing rank. . . . . . . . . . . . . . . . . . . . . 79
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5.8 An example of the intuitive editing capabilities of our artist-friendly model.
Left: Input irradiance map, without subsurface scattering. Middle: Adjusting
the far scattering. Right: Final result after adjusting the near scattering and
the balance between the two. Shifting more energy to near scattering allows
preserving the bump details. . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.9 Comparison of the guide function that reproduces the pre-integrated approx-
imation (left) and our parametrized version that provides artistic control
(right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.10 Comparison of the di�erent techniques proposed with d’Eon’s method [dLE07]
with six Gaussians, and the ground truth (actual 2D kernel). Note that our
separable approximations lead to similar quality results with just two 1D
convolutions, as opposed to the twelve needed by the sum of Gaussians
approach. Note that all separable rank-1 kernels are highlighted with green. 86

5.11 Our results reveal that SVD-based low-rank approximations scale better with
the number of convolutions than the state of the art [dLE07], however, they
still yield only a coarse approximation of the true kernel in the separable case
(rank-1). Note that all separable rank-1 kernels are highlighted in green. The
pre-integrated kernel is exact for axis-aligned functions, such as this example.
The guided optimization with k = 2 provides a comparably good fit, while
the k = 0 case captures the fine details near the boundary at the expense of the
far-range scattering quality. A manual approximation using our artist-friendly
model is illustrated by two approximations, where for the first (close fit),
perceptual similarity to the ground truth was the modeling objective, while
the second (production) was tweaked by an artist for production purposes. 87

5.12 Real-time results for apple. The insets show (from top to bottom) input
irradiance, d’Eon et al. [dLE07] with 1 Gaussian, our analytic kernel pre-
integration technique and the ground truth. Both d’Eon’s with one Gaussian
and ours are run with the same number of convolutions, thereby yielding
similar execution times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.13 Additional results reveal the inherent shape and quality of the separable and
low-rank approximations on a white disk irradiance signal. Please note that,
although the radial asymmetry of our separable kernels and the gradient-color
di�erences of the manual approximations are noticeable in case of the artificial
‘dot’ illumination, these artifacts are less noticeable in case of our practical
rendering examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.14 In harsh lighting conditions, extreme close-ups may reveal artifacts even in the
presence of importance sampling. (a) Initial image; (b) Importance sampling
with 13 samples shows banding artifacts (please zoom in in the digital version
for a better view); (d) Up to 65 samples are needed to eliminate visible
banding; (c) Our jittering approach also eliminates banding while keeping the
sample count low (this image is best viewed in the digital version). . . . . 88
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5.15 This figure illustrates that our jittered sampling scheme is able to remove
banding artifacts stemming from the radial asymmetry of our separable
kernels. The images represent our manual approximation (close fit) of human
skin, which shows visible artifacts if no jittering is used (a), but is able to
approximate the ground truth (b) in a visually plausible way if 33% of the
samples are jittered (c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
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5.41 The quality of the rendered images, with and without importance sampling of
the approximated kernel. (a) Initial image; (b) Uniform sampling with only
seven samples leads to obvious aliasing artifacts; (c) Ground-truth created by
uniform sampling with 513 samples; (d) Our importance sampling with as
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